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Today’s Goal

Last week we learned about linear classification: LDA and logistic regression. These methods assume the decision
boundary between classes is a straight line (or hyperplane).

The problem: In many real-world applications, the boundary between classes isn’t linear. Linear classifiers will struggle.

Today’s roadmap:

1. Why linear fails: When classes aren’t linearly separable

2. k-Nearest Neighbors: Let the data speak—classify based on similar observations
3. Decision Trees: Partition the feature space with simple rules

4. Information Gain: How trees decide where to split

5. Application: Predicting loan defaults with the Lending Club dataset
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Recap: Linear Classification

In Week 7, we saw that linear classifiers make predictions using:
_ T
Z(X) =wp+W X

The class prediction depends on whether Z(X) is positive or negative:

A_{l if z(x) > 0
Y=o ifzx) <0

The decision boundary is where Z(X) = 0 —a straight line in 2D, a plane in 3D, a hyperplane in higher dimensions.

Logistic regression transforms this into a probability using the sigmoid function, but the boundary is still linear.
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When Linear Classification Works

Linear classifiers work well when classes are linearly separable—you can draw a straight line between them.

Linearly Separable: Linear Classifier Works
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A simple linear boundary perfectly separates the two classes.
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The Feature Engineering Problem

Last week we saw that logistic regression can handle nonlinear boundaries if we add the right transformed features

(e.g., x% , X1X2). The model stays linear in its parameters — we just give it richer inputs.

But that approach has a big limitation: we have to know which transformations to use. With 2 features, adding squares
and interactions is easy. With 50 features? There are 1,275 pairwise interactions and 50 squared terms — and we have no

guarantee that quadratic terms are the right choice. Maybe the boundary depends on l0g(x3), or X7/Xx12, or
something we’d never think to try.

We want methods that can learn nonlinear boundaries directly from the data, without us having to guess the right
feature transformations in advance.
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Classification in Finance: The Credit Default Problem

Consider a bank deciding whether to approve a loan. The outcome is binary:

» Class 1 (Default): The borrower fails to repay

» Class 0 (Repaid): The borrower repays in full

Based on features like credit score, income, and debt-to-income ratio, can we predict who will default?

The relationship between features and default is rarely linear. A borrower with moderate income and moderate credit
score might default, while someone with either very high income OR very high credit score might not—this creates

complex, non-linear boundaries.
Today we’ll learn two nonparametric methods that can capture these nonlinear patterns: k-Nearest Neighbors and
Decision Trees.
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Parametric vs. Nonparametric Models

Parametric models (like logistic regression) assume the data follows a specific functional form. We estimate a fixed set
of parameters (Wo, W1, ... , Wp), and these parameters define the model completely.

Nonparametric models make fewer assumptions about the functional form. Instead, they let the data determine the
structure of the decision boundary.

Parametric Nonparametric

Structure Fixed form (e.g., linear) Flexible, data-driven
Parameters Fixed number Grows with data

Examples Logistic regression, LDA k-NN, Decision Trees

Risk Bias if form is wrong Overfitting with limited data

Both k-NN and decision trees are nonparametric—they don’t assume a linear (or any particular) decision boundary.
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Part I: k-Nearest Neighbors
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The Intuition Behind k-NN

k-Nearest Neighbors (k-NN) is based on a simple idea: similar observations should have similar outcomes.

To classify a new observation:

1. Find the K training observations closest to it

2. Take a vote among those k neighbors

3. Assign the majority class

If you want to know if a new loan applicant will default, look at applicants in the training data who are most similar to
them. If most of those similar applicants defaulted, predict default.

No training phase is needed—k-NN stores all the training data and does the work at prediction time. This is sometimes
called a “lazy learner.”

Rotman
Commerce

RSM338 | Kevin Mott



10/55

Distance Recap (Week 4)

k-NN needs to measure how far apart two observations are. Same idea as clustering:
-
d(Xi,Xj) = Ix; — Xj|| — Z(xik — xJ'k)

Two reminders from Week 4:

1. Standardize first. Features on different scales (income in dollars vs. DTl as a ratio) will make distance meaningless.
Standardize each feature to mean 0, standard deviation 1.

2. Distance = norm of a difference. The L 5 (Euclidean) norm is the default. Manhattan (L 1) is an alternative but
Euclidean works well for most applications.
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The k-NN Algorithm

Input: Training data {(X1, 1), ... , (Xn, Yn)}, a new point X, and the number of neighbors k.
Algorithm:

1. Compute the distance from X to every training observation X;

2. Identify the Kk training observations with the smallest distances—call this set [ ;. (X)

3. Assign the class that appears most frequently among the K neighbors:
y'= arg max Z Ty=c}
ied k(X)

The notation T {y =¢} is the indicator function: it equals 1if y; = € and 0 otherwise. So we’re just counting votes.

Rotman
Commerce

RSM338 | Kevin Mott



12/55

k-NN in Action: k=1

1-NN: Nearest neighbor is Class 1
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With k = 1, we classify based on the single closest training point. The new point (star) is assigned the class of its
nearest neighbor (circled).
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k-NN in Action: k=5

5-NN: Votes = [3 for Class 0, 2 for Class 1] = Predict Class 0
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With kK = 5, we take a majority vote among the 5 nearest neighbors (circled). This is more robust than using just one
neighbor.
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The Decision Boundary of k-NN

Unlike linear classifiers, k-NN doesn’t explicitly compute a decision boundary. But we can visualize what the boundary
looks like by classifying every point in the feature space.

5-NN Decision Boundary
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The k-NN decision boundary is nonlinear and adapts to the local density of data. It naturally forms complex shapes
without us specifying any functional form.
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The Role of k: Bias-Variance Tradeoff

The choice of Kk is crucial:

Smallk (e.g., k=1):

» Boundary closely follows the training data
» Very flexible—can capture complex patterns
» High variance, low bias

» Risk of overfitting (sensitive to noise)

Large k (e.g., k=100):

» Boundary is smoother
» Less flexible—averages over many neighbors
» Low variance, high bias

» Risk of underfitting (misses local patterns)

This is the bias-variance tradeoff we’ve seen before. We need to choose Kk that balances these concerns.
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Effect of k on the Decision Boundary
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As Kk increases, the boundary becomes smoother. With K = 1, every training point gets its own region. With large k, the
boundary approaches the overall majority class.
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Choosing k with Cross-Validation

How do we choose K? Use cross-validation (from Week 5):

1. Split training data into folds

2. For each candidate value of k:

» Fit k-NN on training folds

» Evaluate accuracy on validation fold

3. Choose k that maximizes cross-validated accuracy

A common rule of thumb: k < \/ﬁwhere n is the sample size. But cross-validation is more reliable.

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val _score
import numpy as np

# Try different values of k
k_values = range(1, 31)
cv_scores = []

for k in k _values:
knn = KNeighborsClassifier(n_neighbors=k)

scores = cross_val_score(knn, X_train, y_train, cv=5) Rotman
Commerce

cv scores.append(scores.mean())
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1. Split training data into folds

2. For each candidate value of k:
» Fit k-NN on training folds

» Evaluate accuracy on validation fold

3. Choose k that maximizes cross-validated accuracy

A common rule of thumb: k < \/ﬁwhere N is the sample size. But cross-validation is more reliable.

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
import numpy as np

# Try different values of k
k_values = range(1, 31)
cv_scores = []

for k in k_values:
knn = KNeighborsClassifier(n_neighbors=k)
scores = cross_val_score(knn, X _train, y_train, cv=5)
cv_scores.append(scores.mean())

best_k = k_values[np.argmax(cv_scores)]
print(f"Best k: {best_k} with CV accuracy: {max(cv_scores):.3f}")

Rotman
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k-NN: Advantages and Disadvantages

Advantages:

» Simple to understand and implement

» No training phase (just store the data)

» Naturally handles multi-class problems

» Can capture complex, nonlinear boundaries

» No assumptions about the data distribution

Disadvantages:

» Slow at prediction time—must compute distances to all training points
» Doesn’t work well in high dimensions (“curse of dimensionality”)
» Sensitive to irrelevant features (all features contribute to distance)

» Requires feature scaling

For large datasets, approximate nearest neighbor methods can speed up k-NN, but it remains computationally

Intensive.
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The Curse of Dimensionality

k-NN relies on distance, and distance breaks down in high dimensions. Three related problems:

1. The space becomes sparse. In 1D, 100 points cover the range well. In 2D, the same 100 points are scattered across a
plane. In 50D, they’re lost in a vast empty space. The amount of data you need to “fill” the space grows exponentially

with p.

2. You need more data to have local neighbours. If the space is mostly empty, the K “nearest” neighbours may be far
away — and far-away neighbours aren’t informative about the local structure.

3. Distances become less informative. Euclidean distance sums p squared differences. As p grows, all these sums
converge to roughly the same value (law of large numbers). The nearest and farthest neighbours end up almost the
same distance away, so “nearest” stops meaning much.
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Part ll;: Decision Trees
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The Intuition Behind Decision Trees

Decision trees mimic how humans make decisions: a series of yes/no questions.

Consider a loan officer evaluating an application:

1. Is the credit score above 7007
» If no > High risk, deny
» If yes > Continue...

2. Is the debt-to-income ratio below 35%?
» If no > Medium risk, deny

» If yes > Low risk, approve

Each question splits the population into subgroups, and we make predictions based on which group an observation falls
Into.

Decision trees automate this process: they learn which questions to ask and in what order.
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Anatomy of a Decision Tree

A Simple Decision Tree for Loan Default Prediction

Credit Score > 7007

Yes

DTl < 35%7?

€s

Predict: REPAID

Terminology:

Rotman

» Root node: The first split (top of the tree) Commerce
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Credit Score > 7007

No

Terminology:

» Root node: The first split
» Internal nodes: Decision

» Leaf nodes: Terminal nod

DTl < 35%7?

es

Predict: REPAID

(top of the tree)
noints that split the data

es that make predictions

» Depth: The number of sp

its from root to leaf
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How Trees Partition the Feature Space

Each splitin a decision tree divides the feature space with an axis-aligned boundary (parallel to one axis).

Decision Tree Partitions Feature Space into Rectangles
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The tree creates rectangular regions. Each leaf corresponds to one region, and all observations in that region get the
same prediction.
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The Decision Tree Algorithm: Recursive Partitioning

The Goal: Build a tree that makes good predictions.

The Approach: Greedy, recursive partitioning.

1. Start with all training data at the root

2. Find the best split—the feature and threshold that best separates the classes
3. Split the data into two groups based on this rule

4, Recursively apply steps 2-3 to each group

5. Stop when a stopping criterion is met (e.g., minimum samples per leaf, maximum depth)

The key question: How do we define “best” split?
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Measuring Split Quality: Impurity

A good split should create child nodes that are more “pure” than the parent—ideally, each child contains only one class.

We measure impurity—how mixed the classes are in a node. A pure node (all one class) has impurity = 0.

For a node with 1 observations where P is the proportion belonging to class C:

Gini impurity:
Gini=1- ) P
C
Entropy:

Entropy = - ) p log,(px)
C

Both measures equal 0 for a pure node and are maximized when classes are equally mixed.
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Understanding Gini Impurity

For binary classification with p being the proportion in class 1:

Gini = 1 - p* — (1 - p)* = 2p(1 - p)

Impurity Measures for Binary Classification
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Both measures are minimized (=0) when p = 0 or p = 1 (pure node) and maximized when p = 0.5 (maximum

uncertainty). Rotman
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Computing Information Gain

Information gain measures how much a split reduces impurity.

If a parent node P is split into children L (left) and R (right):

Information Gain = Impurity(P) — Z—L - Impurity(L) + Z—R - Impurity(R)
_np p |

where Np , Ny, , Ng are the number of observations in the parent, left child, and right child.

The weighted average accounts for the sizes of the child nodes. The best split is the one that maximizes information
gain.
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Example: Computing Information Gain

Suppose we have 100 loan applicants: 60 repaid, 40 defaulted.
Parent impurity (Gini):

Ginip = 1 - (0.6)> = (04> =1-0.36-0.16 = 0.48

Option A: Split on Credit Score > 700

» Left (below 700): 30 observations (10 repaid, 20 default) > Gini= 1 — (1/3)? — (2/3)? = 0.444
» Right (above 700): 70 observations (50 repaid, 20 default) > Gini= 1 — (5/7)% — (2/7)% = 0.408
30 70

ing =048 — | —(0.444) + —(0.408)| = 0.48 —0.419 = 0.061
Gaing = 0.48 [100(0 )+ <00 © 08) 0.48 — 0.419 = 0.06

We’d compute this for all possible features and thresholds, then choose the split with highest gain.
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For Continuous Features: Finding the Best Threshold

For a continuous feature (like credit score), we need to find the best threshold for splitting.

Algorithm:

1. Sort the observations by the feature value
2. Consider each unique value as a potential threshold
3. For each threshold, compute the information gain

4. Choose the threshold with the highest gain

If there are 1 unique values, we evaluate up to n — 1 possible splits for that feature. This is computationally tractable
because we can update class counts incrementally as we move through sorted values.
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Building a Tree in Python

from sklearn.tree import DecisionTreeClassifier
import numpy as np

# Generate sample data

np.random.seed(42)

n = 200

credit_score = np.random.normal(700, 50, n)
dti = np.random.normal(30, 10, n)

X = np.column_stack([credit_score, dtil)

# Default probability depends on both features
prob_default = 1 / (1 + np.exp(0.02 * (credit_score - 680) — 0.05 x (dti - 35)))
y = (np.random.random(n) < prob_default).astype(int)

# Fit decision tree

tree = DecisionTreeClassifier(max_depth=3, random_state=42)
tree.fit(X, vy)

Tree depth: 3
Number of leaves: 8
Training accuracy: 0.720
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Visualizing the Learned Tree

Learned Decision Tree (max_depth=3)

Credit Score <= 704.918
gini = 0.492
samples = 200
value = [113.0, 87.0]
class = Repaid

/ \

DTl <= 39.341 DTl <= 44.583
gini = 0.478 gini = 0.355
samples = 109 samples = 91
value = [43, 66] value = [70, 21]
class = Default class = Repaid

Credit Score <= 646.67 Credit Score <= 710.574 DTl <= 45.594
gini = 0.496 gini = 0.326 gini = 0.5
samples = 92 samples = 83 samples = 8
value = [42, 50] value = [66, 17] value = [4, 4]
class = Default class = Repaid class = Repaid

\

gini = 0.355 gini = 0.496 gini = 0.444 gini = 0.354 gini = 0.444

samples = 26 samples = 66 samples = 3 samples = 74 samples = 6
value = [6, 20] value = [36, 30] value = [1, 2] value = [57, 17] value = [4, 2]
class = Default class = Repaid class = Default class = Repaid class = Repaid

The tree learns splits automatically from the data. Each node shows the split condition, impurity, sample count, and

class distribution. Rotman
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The Decision Boundary of a Tree

Decision Tree Boundary (max_depth=3)
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Decision tree boundaries are always axis-aligned rectangles—combinations of horizontal and vertical lines. This is a
limitation compared to k-NN’s curved boundaries.
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Controlling Tree Complexity

Deep trees can overfit—they memorize the training data perfectly but fail on new data.

Strategies to prevent overfitting:

1. Pre-pruning: Stop growing before the tree becomes too complex
» max_depth: Maximum tree depth
» min_samples_split: Minimum samples required to split a node
» min_samples_leaf: Minimum samples required in a leaf

2. Post-pruning: Grow a full tree, then remove branches that don’t help

» ccp_alpha: Cost-complexity pruning parameter

These hyperparameters are chosen via cross-validation.
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Effect of Tree Depth

Depth = 1, Acc = 0.68 Depth = 3, Acc = 0.72
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Deeper trees create more complex boundaries. With unlimited depth, the tree can achieve 100% training accuracy but
likely overfits.
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Decision Trees: Advantages and Disadvantages

Advantages:

» Easy to interpret and explain (white-box model)

» Handles both numeric and categorical features

» Requires little data preprocessing (no scaling needed)
» Can capture interactions between features

» Fast prediction

Disadvantages:

» Axis-alighed boundaries only (can’t capture diagonal boundaries efficiently)
» High variance—small changes in data can produce very different trees
» Prone to overfitting without regularization

» Greedy algorithm may not find globally optimal tree

The high variance problem is addressed by ensemble methods (Random Forests, Gradient Boosting)—we’ll cover these

in Week 9.
Rotman
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Part lll: Comparing k-NN and Decision Trees
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k-NN vs. Decision Trees

Aspect k-NN Decision Trees
Decision boundary Flexible, curved Axis-aligned rectangles
Training None (stores data) Builds tree structure
Prediction speed Slow (compare to Fast (traverse tree)
all training)
Interpretability Low (black-box) High (rules)
Feature scaling Required Not required
High dimensions Struggles (curse Handles better
of dim.)
Missing data Problematic Can handle
Neither method dominates—the best choice depends on the data and application requirements. Rotman
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When to Use k-NN

k-NN is a good choice when:

» You have low to moderate dimensionality (say, p < 20)

» The decision boundary is expected to be complex and curved
» Interpretability is not critical

» You have enough computational resources for prediction

» The data is relatively dense

Applications in finance:

» Anomaly detection (fraudulent transactions look different from neighbors)
» Collaborative filtering (recommend assets held by similar investors)

» Pattern matching (find historical periods similar to current conditions)

Rotman
Commerce

RSM338 | Kevin Mott



39 /55

When to Use Decision Trees

Decision trees are a good choice when:

» Interpretability is important (need to explain decisions)
» You have mixed feature types (numeric and categorical)
» There may be complex interactions between features

» Fast prediction is required

» You’ll use them as building blocks for ensembles

Applications in finance:

» Credit scoring (need explainable decisions for regulatory compliance)
» Customer segmentation (identify distinct client groups)

» Risk management (clear rules for risk categories)
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Part IV: Application to Lending Club Data

Rotman
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The Lending Club Dataset

Lending Club was a peer-to-peer lending platform where individuals could lend money to other individuals.

The classification problem: Given borrower characteristics at the time of application, predict whether the loan will be
repaid or will default.

Features include:

» FICO score (credit score, 300-850)

» Annual income

» Debt-to-income ratio (DTI)

» Home ownership (own, mortgage, rent)
» Loan amount

» Employment length

This is a real business problem with significant financial stakes—approving a bad loan costs money, but rejecting a good
loan loses revenue.

Rotman
Commerce

RSM338 | Kevin Mott



— 42 /55

Loading and Preparing the Data

import pandas as pd

# Load Lending Club data (pre-split by Hull)
train_data = pd.read_excel('lendingclub_traindata.xlsx"')
test_data = pd.read_excel('lendingclub_testdata.xlsx"')

# Check columns and target

print(f"Training samples: {len(train_data)}")

print(f"Test samples: {len(test_data)}")

print(f"\nTarget distribution in training data:")
print(train_datal'loan_status'].value_counts(normalize=True))

Training samples: 8695
Test samples: 5916

Target distribution in training data:
loan_status

1 0.827602

0 0.172398

Name: proportion, dtype: float64
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Class Distribution in Lending Club Data
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6000 +
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Count
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Fully Paid (0)

Default (1)
Loan Status

Fully paid: 17.2%
Default: 82.8%

The data is imbalanced: most loans are repaid. This is realistic—lenders wouldn’t survive if most loans defaulted!

Imbalanced data requires careful evaluation. High accuracy might just mean predicting “repaid” for everyone.

Rotman
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Preparing Features

# Select features for modeling
features = ['fico_low', 'income', 'dti', 'home_ownership']

# Prepare X and y
X_train = train_data[features].copy()
y_train = train_datal'loan_status'].values

X_test = test_datal[features].copy()
y_test = test _datal'loan_status'].values

# Handle missing values if any
X_train = X_train.fillna(X_train.median())
X_test = X_test.fillna(X_train.median())

print(f"\nFeature summary:")
print(X_train.describe())

RSM338 | Kevin Mott

Feature summary:
fico_low income dti home_ownership
count 8695.000000 8695.000000 8695.000000 8695.000000
mean 694.542841 77.871491 19.512814 0.591374
std 30.393493 57.737053 16.928800 0.491608
min 660.000000 0.200000 0.000000 0.000000
255% 670.000000 46.374000 12.800000 0.000000
50% 685.000000 65.000000 18.630000 1.000000 Rotman
75% 710.000000 93.000000 25.100000 1.000000 Commerce
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Training k-NN

from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score

# Scale features for k—-NN

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test _scaled = scaler.transform(X_test)

# Find best k using cross-validation
k_values = range(1, 101, 5)
cv_scores = []

for k in k values:
knn = KNeighborsClassifier(n_neighbors=k)
scores = cross_val_score(knn, X_train_scaled, y_train, cv=5, scoring='roc_auc')

cv_scores.append(scores.mean())
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Best k: 91 (CV AUC = 0.6004)

ALY Y11\

k-NN: Cross-Validated AUC vs. k
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SCAd LETlr = SudliiadrauascdtLer ()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Find best k using cross-validation
k_values = range(1, 101, 5)
cv_scores = []

for k in k _values:
knn = KNeighborsClassifier(n_neighbors=k)
scores = cross_val_score(knn, X_train_scaled, y_train, cv=5, scoring='roc_auc')
cv_scores.append(scores.mean())
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Best k: 91 (CV AUC = 0.6004)

k-NN: Cross-Validated AUC vs. k
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Training a Decision Tree

from sklearn.tree import DecisionTreeClassifier

# Find best max_depth using cross-validation
depths = [2, 3, 4, 5, 6, 7, 8]
cv_scores_tree = []

for depth in depths:
tree = DecisionTreeClassifier(max_depth=depth, random_state=42)
scores = cross_val_score(tree, X_train, y_train, cv=5, scoring='roc_auc')
cv_scores_tree.append(scores.mean())
print(f"depth = {depth}: CV AUC = {scores.mean():.4f} (+/- {scores.std():.4f})")

best_depth = depths[cv_scores_tree.index(max(cv_scores_tree))]
print(f"\nBest max_depth: {best_depth}")

depth = 2: CV AUC = 0.5749 (+/- 0.0156)
depth = 3: CV AUC = 0.5867 (+/- 0.0129)
depth = 4: CV AUC = 0.5902 (+/- 0.0208)
depth = 5: CV AUC = 0.5922 (+/- 0.0242)
depth = 6: CV AUC = 0.5941 (+/- 0.0165)
depth = 7: CV AUC = 0.5951 (+/- 0.0219)
depth = 8: CV AUC = 0.5887 (+/- 0.0199)
Best max_depth: 7
Note: Decision trees don’t require feature scaling. Rotman
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Evaluating on Test Data

from sklearn.metrics import accuracy_score, roc_auc_score, classification_report

# Train final models
knn_final = KNeighborsClassifier(n_neighbors=best_k)
knn_final.fit(X_train_scaled, y_train)

tree_final = DecisionTreeClassifier(max_depth=best_depth, random_state=42)
tree_final.fit(X_train, y_train)

# Predictions
y_pred_knn = knn_final.predict(X_test_scaled)
y_pred_tree = tree_final.predict(X_test)

# Probabilities for AUC
y_prob_knn = knn_final.predict_proba(X_test_scaled)[:, 1]
y _prob_tree = tree_final.predict_proba(X_ test)[:, 1]

R S A T U N (Y N . e B S I I

k-NN Results:
Accuracy: 0.8212
AUC: 0.6051

Decision Tree Results:
Accuracy: 0.8119
AUC: 0.5956

Rotman
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ROC Curves

ROC Curves: Lending Club Default Prediction
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The ROC curve shows the tradeoff between catching defaults (true positive rate) and falsely flagging good loans (false
positive rate).
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Decision Tree for Loan Default (max_depth=7)
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The tree reveals which features matter most. The first split (root) uses the most informative feature—likely FICO score,

consistent with banking practice.
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Feature Importance

import pandas as pd

# Get feature importances from tree
importances = pd.DataFrame({

'Feature': features,

‘Importance': tree_final.feature_importances_
}).sort_values('Importance', ascending=False)

print("Feature Importances (Decision Tree):")
print(importances.to_string(index=False))

Feature Importances (Decision Tree):
Feature Importance
dti 0.406899
income 0.294622
fico_low 0.256548
home_ownership 0.041931

Which Features Drive Default Predictions?

home_ownership

fico_low

Rotman
Commerce
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8
9 print("Feature Importances (Decision Tree):")
10 print(importances.to_string(index=False))

Feature Importances (Decision Tree):
Feature Importance
dti 0.406899
income 0.294622
fico_low 0.256548
home_ownership 0.041931

Which Features Drive Default Predictions?

home_ownership

fico_low

income

dti

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Importance

Feature importance tells us which variables the tree relied on most. Higher importance means the feature contrimgﬁjnan
more to reducing impurity. Commerce

RSM338 | Kevin Mott
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Summary and Preview
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What We Learned Today

Linear classifiers have limitations: When classes aren’t linearly separable, we need nonlinear methods.

k-Nearest Neighbors:

» Classifies based on majority vote among K closest training observations
» Creates flexible, curved decision boundaries
» Requires feature scaling; struggles in high dimensions

» No training, but slow at prediction time

Decision Trees:

» Recursively partition data based on feature thresholds
» Creates axis-aligned rectangular boundaries
» Highly interpretable; handles mixed feature types

» Prone to overfitting without regularization

Rotman
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Key Concepts

Information gain measures how much a split improves class purity. Trees greedily select splits that maximize
information gain.

Gini impurity and entropy are two ways to measure how mixed the classes are in a node.

Bias-variance tradeoff appears in both methods:
» k-NN: small k = high variance; large k = high bias

» Trees: deep trees = high variance; shallow trees = high bias

Cross-validation is essential for selecting hyperparameters (K or tree depth).
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Next Week: Ensemble Methods

Decision trees have high variance—small changes in data can produce very different trees. Next week we’ll see how to fix
this.
Week 9: Ensemble Methods

» Random Forests: Average many trees, each trained on random subsets

» Gradient Boosting: Build trees sequentially, each correcting previous errors

» XGBoost: Industrial-strength boosting used in finance and competitions

Ensemble methods combine many weak learners into a strong learner, dramatically reducing variance while
maintaining flexibility.
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