1/55

RSM338: Machine Learning in Finance
Week 7: Linear Classification | March 4-5, 2026

Kevin Mott

Rotman School of Management

Rotman
Commerce

RSM338 | Kevin Mott

2 /55

Today’s Goal

This week we move from predicting continuous outcomes (regression) to predicting categorical outcomes
(classification).

Classification in finance: credit default, fraud detection, market direction, bankruptcy prediction, sector assignment.

Today: logistic regression, linear discriminant analysis (LDA), and evaluation metrics.

Rotman
Commerce

RSM338 | Kevin Mott

3/55

The Binary Classification Setup

We have N observations, each with features X; and a binary class label y; € {0,1} .

Our goal: learn a function that predicts y for new observations.

Two approaches:

1. Predict the class directly: OutputOor1
2. Predict the probability: Estimate P(Y = 1 | X) , then threshold

The second approach is more flexible—it tells us how confident we are, not just the prediction.

Rotman
Commerce

RSM338 | Kevin Mott

4 /55

Part I: Why Not Just Use Regression?

Rotman
Commerce

RSM338 | Kevin Mott

5/55

The Linear Probability Model

A natural first idea: encode y € {0, 1} and fit linear regression. This is the linear probability model.
We’ll use credit card default data throughout this lecture: 1 million individuals with balance, income, and default status.

import numpy as np
import pandas as pd

Load credit default data
data = pd.read _csv('credit_default.csv')

balance = data['balance'].values
income = datal['income'].values
default = data['default'].values

print(f"Observations: {len(data)}")
print(f"Default rate: {default.mean():.1%}")

Observations: 1000000
Default rate: 3.3%

from sklearn. linear_model import LinearRegression

Fit linear regression
X = balance.reshape(-1, 1)
y = default

. . Rotman
lr = LinearRegression() Commerce

RSM338 | Kevin Mott

5/55

Default rate: 3.3%

from sklearn. linear_model import LinearRegression

Fit linear regression
X = balance.reshape(-1, 1)
y = default

Lr = LinearRegression()
lr.fit(X, y)

Predictions
balance_grid = np.linspace(@, 2700, 100).reshape(-1, 1)
prob_linear = lr.predict(balance_grid)

Linear Probability Model

1.0 1 - - S - - - - -~~~
0.8 -
@ i
8 06 No default
; Default
= - Linear regression
2 0.4 -
o]
o
a
0.2 -
0.0 n » il
0 500 1000 1500 2000 2500 Rotman
Balance Commerce

RSM338 | Kevin Mott

6 /55

The Problem: Predictions Outside [0, 1]

The linear probability model can produce “probabilities” that aren’t valid probabilities.

prob_all = lr.predict(balance.reshape(-1, 1))

print(f"Minimum predicted probability: {prob_all.min():.3f}")
print(f"Maximum predicted probability: {prob_all.max():.3f}")
print(f"Number of predictions < @: {(prob_all < @).sum()}")
print(f"Number of predictions > 1: {(prob_all > 1).sum()}")

Minimum predicted probability: -0.106
Maximum predicted probability: 0.344
Number of predictions < 0: 330069
Number of predictions > 1: 0

What does a probability of -0.05 mean? These are nonsensical.

We need a function that naturally maps any input to the interval (0, 1). This is exactly what logistic regression does.

Rotman
Commerce

RSM338 | Kevin Mott

7155

Part Il: Logistic Regression

Rotman
Commerce

RSM338 | Kevin Mott

" The Logistic Function

8 /55

Instead of modeling probability as a linear function, we use the logistic function (also called the sigmoid function):

l+ezZ 1+e=

o(2) = e’ 1

This S-shaped function has two properties:

1. Output is always between0and 1: Iim o(z) =0; Iim o(z) =1

Z—»—0C0 Z—+00

2. Monotonic: Larger Z always means larger probability

The Logistic (Sigmoid) Function
1.0 -

0.8 -

0.6

o(2)

0.4 1

0.2 -

Rotman
Commerce
RSM338 | Kevin Mott

— 8 /55

INSt€ad o1 modeling probabIlity as a linear tTunction, we use the logistic Tunction (also Called the sigmoia runction):

o(2) = e 1
14+ez 1+e?

This S-shaped function has two properties:

1. Output is always between0and 1: Iim o(z) =0; Iim o(z) =1

Z—>»—C0 Z—+00

2. Monotonic: Larger Z always means larger probability

The Logistic (Sigmoid) Function

7 T 5 ; ; ; :
2 Rotman
Commerce

RSM338 | Kevin Mott

9/55

The Logistic Regression Model

In logistic regression, we model the probability of the positive class as:

1

P =1 = -+ / e
=1 =cG+pN ="

The notation P(y = 1 | X) reads “the probability that y = 1 given X.” This is a conditional probability—the
probability of default, given that we observe a particular set of feature values.

HereX = (X1, X2, ... ,Xp) isa p-vector of features (attributes) for an observation,and B = (81,32, ... ,Bp)’ is
the corresponding p-vector of coefficients we need to learn.

Rotman
Commerce

RSM338 | Kevin Mott

10/55

The Linear Predictor

Let’s define Z = By + B’X as the linear predictor. Writing out the dot product:

Z = ﬁo +51X1 +ﬁzX2 + - +Bpxp
Then the model becomes:

1
1 +e%

Py=1[x)=

The linear combination Z can be any real number, but the logistic function squashes it to (0, 1).

» Ifz=0:P(y =1) = 0.5 (coinflip)
» 1Ifz > 0: P(y = 1) > 0.5 (more likely positive)
» If z < 0: P(y = 1) < 0.5 (more likely negative)

Rotman
Commerce

RSM338 | Kevin Mott

11 /55

What Are Odds?

You’ve seen odds in sports betting: “the Leafs are 3-to-1 to win” means for every 1 time they win, they lose 3 times.

Odds — P(event) P(event)

P(no event) 1 — P(event)

Probability Odds Interpretation

50% 1:1 Even money—equally likely

75% 3:1 3 times more likely to happen than not
20% 1:4 4 times more likely not to happen

90% 9:1 Very likely

Odds range from 0 to 0, with 1 being the “neutral” point (50-50). This asymmetry is awkward—log-odds fixes it.

Rotman
Commerce

RSM338 | Kevin Mott

12/55

The Log-Odds (Logit) Interpretation

Taking the log of odds gives us log-odds (also called the logit):

» Log-odds of 0 means 50-50 (odds =1)
» Positive log-odds means more likely than not

» Negative log-odds means less likely than not

In logistic regression, the log-odds is linear in the features:

P(y=1]|x)
m(l—P(y:llx)

)=60+ﬁ'x

The coefficient 5; tells us how a one-unit increase in X affects the log-odds:

» If 8 > 0: higher X j increases the probability of y = 1
» If Bj < O: higher X decreases the probability of y = 1

» If B = 0: X has no effect

: . : B. . e : L Rotman
We can also interpret coefficients as odds ratios: €”J is the multiplicative change in odds for a one-unit increase (Doﬁvb?erce

RSM338 | Kevin Mott

12/55

Taking the log of odds gives us log-odds (also called the logit):

» Log-odds of 0 means 50-50 (odds =1)
» Positive log-odds means more likely than not

» Negative log-odds means less likely than not

In logistic regression, the log-odds is linear in the features:

P(y=1]x) B /
1“(1_p@=1|x>)—50+ﬁ"

The coefficient 5; tells us how a one-unit increase in X affects the log-odds:

» If 8 > 0O: higher X increases the probability of y = 1
» If Bj < O: higher X j decreases the probability of y = 1

» If B = 0: X has no effect

We can also interpret coefficients as odds ratios: P is the multiplicative change in odds for a one-unitincrease in Xj. If

Bj = 0.5, then eV = 1.65: each one-unit increase multiplies the odds by 1.65 (a 65% increase). ggf,’,'},‘,’;’,ce

RSM338 | Kevin Mott

13 /55

Fitting Logistic Regression: The Loss Function

How do we find the best coefficients ﬁo , P7? Like any ML model, we define a loss function and minimize it.

For observation i with features X; and label y;, let p. = P(y; = 1 | X;) be our predicted probability. Intuitively:

» If yi = 1:wewant p;close to 1 (predict high probability for actual positives)

» If y; = 0: we want p{close to 0 (predict low probability for actual negatives)

The binary cross-entropy loss (also called log loss) captures this:
1 n
OB = - 21] [y In(pf) + (1 = o) In(1 = p)]
=

When y; = 1, the loss is — In(p;), which is small when p; is close to 1. When y; = 0, the lossis — In(1 — p;), which is

small when p; is close to 0.

Rotman
Commerce

RSM338 | Kevin Mott

14 /55

Comparing Loss Functions: Logistic vs. Linear Regression

Both linear and logistic regression fit into the same ML framework: define a loss function, then minimize it.

Linear Regression Logistic Regression
Output Continuous y~ Probability p'e (0, 1)
Loss function Mean squared error (MSE) Binary cross-entropy

1 N 2 1 A A
Formula 30—y %, |y In(p) + (1 = y) In(1 -)
Optimization Closed-form solution Iterative (gradient descent)

The choice of loss function depends on the problem: squared error makes sense for continuous outcomes, cross-entropy
makes sense for probabilities.

(i) Connection to statistics

In statistics, minimizing cross-entropy loss is equivalent to maximum likelihood estimation. Minimizing MSE is equivalent to maximum likelihood under the assumption
that errors are normally distributed. Both approaches—ML and statistics—arrive at the same answer through different reasoning.

Rotman
Commerce

RSM338 | Kevin Mott

— 15/55

Logistic Regression for Credit Default

Let’s fit logistic regression to our credit default data:

from sklearn. linear_model import LogisticRegression

Fit logistic regression
log_reg = LogisticRegression()
log_reg.fit(X, y)

Predictions
prob_logistic = log_reg.predict_proba(balance_grid)[:, 1]

print(f"Logistic Regression:")
print(f" Intercept: {log_reg.intercept_I[0]:.4f}")
print(f" Coefficient on balance: {log_reg.coef_[0, 0]:.6f}")

Logistic Regression:
Intercept: -11.6163
Coefficient on balance: 0.006383

Linear Regression Logistic Regression

1.0 - e 1.0 - @--

0.8 1 0.8 A1

o
o
o
()]

Rotman
Commerce

Default)

Default)

RSM338 | Kevin Mott

15/55

Predictions
prob_logistic = log_reg.predict_proba(balance_grid)[:, 1]

print(f"Logistic Regression:")
print(f" Intercept: {log_reg.intercept_[0]:.4f}")
print(f" Coefficient on balance: {log_reg.coef_[0, 0]:.6T}")

Logistic Regression:
Intercept: -11.6163
Coefficient on balance: 0.006383

Linear Regression Logistic Regression
1.0 4 B T ereerreeeee ey 1.0 4 @
0.8 - 0.8 1
— 0.6 1 — 0.6
= =
> -}
o o
)])
a <)
5 0.4 A S 0.4 -
0.2 1 0.2 A
0.0 1 0.0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Balance Balance

t
The logistic curve stays within [0, 1] and captures the S-shaped relationship between balance and default probagmgrce

RSM338 | Kevin Mott

16 /55

Making Predictions

Logistic regression gives us a probability. To make a classification decision, we need a threshold (also called a cutoff).

The default rule: predictclass 1if P(y = 1 | x) > 0.5

Predict probabilities and classes
prob_pred = log_reg.predict_proba(X)[:, 1]
class_pred = (prob_pred > 0.5).astype(int)

Compare to actual

print(f"Using threshold = 0.5:")

print(f" Predicted defaults: {class_pred.sum()}")

print(f" Actual defaults: {int(default.sum())}")

print(f" Correctly classified: {(class_pred == default).sum()} / {len(default)}")
print(f" Accuracy: {(class_pred == default).mean():.1%}")

Using threshold = 0.5:
Predicted defaults: 19005
Actual defaults: 33000
Correctly classified: 975591 / 1000000
Accuracy: 97.6%

The 0.5 threshold isn’t always optimal—we’ll return to this when discussing evaluation metrics.

Rotman
Commerce

RSM338 | Kevin Mott

— 17 /55

Multiple Features

Logistic regression easily extends to multiple predictors:

1
1 + e—(ﬁo"‘ﬁlxl +By %+ +p ,Xp)

Py=1|x) =

Fit with both balance and income

X_both = np.column_stack([balance, income])
log_reg_both = LogisticRegression()
log_reg_both.fit(X_both, default)

print(f"Logistic Regression with Balance and Income:")

print(f" Intercept: {log_reg_both.intercept_[0]:.4f}")

print(f" Coefficient on balance: {log_reg_both.coef_[0, 0]:.6T}")
print(f" Coefficient on income: {log_reg_both.coef_[0, 1]:.9f}")

Logistic Regression with Balance and Income:
Intercept: -11.2532
Coefficient on balance: 0.006383
Coefficient on income: -0.000009279

The coefficient on income is tiny—income adds little predictive power beyond balance.

Rotman
Commerce

RSM338 | Kevin Mott

18 /55

Multi-Class Logistic Regression

When we have K > 2 classes, we can extend logistic regression using the softmax function.

For each class k, we define a linear predictor:

Zk = Pro + PIX

The probability of class K is:

K :
2. j=1 e

This is called multinomial logistic regression or softmax regression.

The softmax function ensures:

» Each probability is between 0 and 1

» The probabilities sum to 1 across all classes

Rotman
Commerce

RSM338 | Kevin Mott

19/55

Regularized Logistic Regression

Just like linear regression, logistic regression can overfit—especially with many features.

We can add regularization. Lasso logistic regression maximizes:
P

O) -1) 1B)]
J=1

The penalty A X \ﬁ] | shrinks coefficients toward zero and can set some exactly to zero (variable selection).

Benefits:

» Prevents overfitting when D is large relative to n

» ldentifies which features matter most

» Improves out-of-sample prediction

The regularization parameter A is chosen by cross-validation.

from sklearn. linear_model import LogisticRegressionCV

Fit Lasso logistic regression with CV Rotman
log_reg_lasso = LogisticRegressionCV(penalty='11', solver='saga', cv=5, max_iter=1000) Commerce
RSM338 | Kevin Mott

19/55

J—1

The penalty A X \ﬁ] | shrinks coefficients toward zero and can set some exactly to zero (variable selection).

Benefits:

» Prevents overfitting when D is large relative to n

» ldentifies which features matter most

» Improves out-of-sample prediction

The regularization parameter A is chosen by cross-validation.

from sklearn. linear_model import LogisticRegressionCV

Fit Lasso logistic regression with CV
log_reg_lasso = LogisticRegressionCV(penalty='11"', solver='saga', cv=5, max_iter=1000)
log_reg_lasso.fit(X_both, default)

print(f"Lasso Logistic Regression (A chosen by CV):")

print(f" Best C (inverse of A): {log_reg_lasso.C_[0]:.4f}")
print(f" Coefficient on balance: {log_reg_lasso.coef_[0, 0]:.6f}")
print(f" Coefficient on income: {log_reg_lasso.coef_[0, 1]:.9f}")

Lasso Logistic Regression (A chosen by CV):
Best C (inverse of A): 0.0001
Coefficient on balance: 0.001064 Rotman
Coefficient on income: -0.000123506 Commerce

RSM338 | Kevin Mott

20/55

Part lll; Decision Boundaries

Rotman
Commerce

RSM338 | Kevin Mott

21/55

The Decision Boundary

Think of a classifier as drawing a line (or curve) through feature space that separates the classes. The decision boundary
is this dividing line—observations on one side get predicted as Class 0, observations on the other side as Class 1.

For logistic regression with threshold 0.5, we predict Class 1when P(y = 1 | x) > 0.5.

The boundary iswhere P(y = 1 | X) = 0.5 exactly—the point of maximum uncertainty.

Decision Boundary at P=0.5

1.0

Predict

0.8 A
Default

0.6 1
- P(default|balance)
= = Threshold p=0.5

P(default)

0.4 1

Predict
No Default

0.2 1

0.0 T I I . I I
0 500 1000 1500 2000 2500

Balance

The horizontal red line marks P = (.5. Where the probability curve crosses this threshold defines the decision Rotman

bounda ri in feature si ace—observations with balance above this i oint are i redicted to default. Commerce
RSM338 | Kevin Mott

21/55

12 LINID UI\I’IUIII& LIl I WihIodW 1 VULIWVIIWDG VI Vi JiIvAW 6\.—!.- I-JI il il wd U wlUdJdJd V, Wkl VULIWIIYD VI LW WViillTw] JiIViw U WwilUdJdd e

For logistic regression with threshold 0.5, we predict Class 1 when P(y = 1| x) > 0.5.

The boundary is where P(y = 1 | X) = 0.5 exactly—the point of maximum uncertainty.

Decision Boundary at P=0.5

1.0

Predict

0.8 A
Default

0.6 1
- P(default|balance)

== Threshold p=0.5

P(default)

0.4 -

Predict
No Default

0.2 1

0.0 T I I I L
0 500 1000 1500 2000 2500

Balance

The horizontal red line marks P = (.5. Where the probability curve crosses this threshold defines the decision
boundary in feature space—observations with balance above this point are predicted to default.

With multiple features, the boundary is where 180 + ﬁlxl + 52x2 + -+ = O—alinear equation in the features. This is

why logistic regression is called a linear classifier: the decision boundary is a line (in 2D) or hyperplane (in higheﬁotman
dimensions). Commerce

RSM338 | Kevin Mott

22 /55

What If Classes Aren’t Linearly Separable?

Sometimes a straight line can’t separate the classes well. We can create curved boundaries by adding transformed
features to our model:

» Include x%, x%, X1X» as additional features

» The modelis still logistic regression (linear in these new features)

» Butthe boundary is now curved in the original (X1, X2) space

We’ll see more flexible classifiers (trees, k-NN) next week that don’t require manual feature engineering.

The model is still “logistic regression” (linear in the transformed features), but the decision boundary is nonlinear in the
original features.

Rotman
Commerce

RSM338 | Kevin Mott

23 /55

Linear vs. Quadratic Boundaries

Consider data where Class 0 forms an inner ring and Class 1 forms an outer ring. No straight line can separate these
classes—we need a circular boundary.

A circle centered at the origin has equation x% + x% = 1. If we add squared terms as features, the decision boundary
becomes:

Bo + PBi1x1 + Paxz + B3x] + Paxi X2 + Bsx5 =0

This is a quadratic equation in X1 and X2 —it can represent circles, ellipses, or other curved shapes.

from sklearn.preprocessing import PolynomialFeatures

Linear: uses only x1, x2
log_reg_linear = LogisticRegression()
log_reg_linear.fit(X_ring, y_ring)

Quadratic: add x172, x272, x1xx2 as new features
poly = PolynomialFeatures(degree=2)

X_ring_poly = poly.fit_transform(X_ring)
log_reg_quad = LogisticRegression()
log_reg_quad.fit(X_ring_poly, y_ring)

v LogisticRegression (i (7 Rotman
Commerce

RSM338 | Kevin Mott

23 /55

-~ -~ SRS

., Parameters

To visualize the decision boundary, we create a grid of points, compute P(y = 1) at each point, then draw the contour

where P = 0.5.

Create grid covering the feature space
x1_range = np.linspace(-5, 5, 100)

X2_range = np.linspace(-5, 5, 100)

X1, X2 = np.meshgrid(x1_range, x2_range)

grid = np.column_stack([X1.ravel(), X2.ravel()])

Predict P(y=1) at every grid point
probs_linear = log_reg_linear.predict_proba(grid)[:, 1].reshape(X1l.shape)
probs_quad = log_reg_quad.predict_proba(poly.transform(grid))[:, 1].reshape(X1l.shape)

Linear: Bo + B1x1 + Bax2 =0 Quadratic: includes x7, x2, X1 X3
4 4
%
F' i
)
2 8 ‘e 2
> Sdeo ot
00 .. o5’}
™~ .. @0 ™~
< 0 0% ® g a < 0 0
&
(8 ° ® ® e o
CR) 0
Swo % .‘3. .3 > Rotman
] ° > 2 Commerce

RSM338 | Kevin Mott

23 /55

Create grid covering the teature space
x1_range = np.linspace(-5, 5, 100)

X2_range = np.linspace(-5, 5, 100)

X1, X2 = np.meshgrid(x1_range, x2_range)

grid = np.column_stack([X1.ravel(), X2.ravel()])

Predict P(y=1) at every grid point
probs_linear = log_reg_linear.predict_proba(grid)[:, 1].reshape(X1.shape)
probs_quad = log_reg_quad.predict_proba(poly.transform(grid))[:, 1].reshape(X1l.shape)

Linear: Bo + Bix1 + B2x2 =0 Quadratic: includes x%, x2, X, X;

The linear model is forced to draw a straight line through the rings. The quadratic model can learn a circular bouﬂ%at%an
that actually separates the classes. Commerce

RSM338 | Kevin Mott

24 /55

Part IV: Linear Discriminant Analysis

Rotman
Commerce

RSM338 | Kevin Mott

25 /55

Why Another Classifier?

Clustering (Week 5) Logistic Regression

Type Unsupervised Supervised Supervised

Labels Unknown — discover Known — learn a Known — learn
them boundary distributions

Strategy Assume each group is a Directly model Model P(X |) per
distribution; find the P(y I x) class, then apply Bayes’
groups theorem

LDA is the supervised version of the distributional thinking you used in clustering: instead of discovering groups, you
already know them and want to learn what makes each group different.

In practice, LDA and logistic regression often give similar answers — the value is in understanding both ways of thinking
about classification.

Rotman
Commerce

RSM338 | Kevin Mott

26 /55

A Different Approach: Bayes’ Theorem

Logistic regression directly models P (y|X)—the probability of the class given the features.

Discriminant analysis takes a different approach using Bayes’ theorem:

P(x|y =k) - P(y = k)

P = k —
v = klx) P
In words:
. Likelihood x Prior
Posterior = :
Evidence

Instead of modeling P (y|X) directly, we model:

» P(y = k) — the prior probability of each class (how common is each class?)

» P(X|y = k) — the likelihood (what do features look like within each class?)

Rotman
Commerce

RSM338 | Kevin Mott

27 /55

Setting Up the Model

Let’s establish notation:

» K classeslabeled 1,2, ... K
» Tx = P(y = k) — prior probability of class k
» fx(X) = P(Xx|y = k) — probability density of X given class k

Bayes’ theorem gives us the posterior probability:

Jr(X) 7tk

P(y = k|x) = .
> j=1 fj(x)ﬂ'j

The denominator is the same for all classes—it just ensures probabilities sum to 1.

We classify to the class with the highest posterior probability.

Rotman
Commerce

RSM338 | Kevin Mott

28 /55

The Normality Assumption

Linear Discriminant Analysis (LDA) assumes that within each class, the features follow a multivariate normal
distribution:

X‘y= k ~ D(I"kaz)

The density function is:

_ ! s (x -
fr(x) = (27r)P/2|Z\”26Xp(5 (X = pi) T (x ﬂk))

where:

» Uk is the mean of class k (different for each class)

» 24 is the covariance matrix (same for all classes — this is the key assumption!)

Each class is a normal “blob” centered at Uy, but all classes share the same shape (covariance).

Rotman
Commerce

RSM338 | Kevin Mott

29 /55

Visualizing the LDA Assumption

LDA: Same Covariance, Different Means

® Class1 0®
Class 2 _
o Class 3 e e" w®

X2
O \‘
FYae
-~
d |
\
\
-
Sols -
0

The dashed ellipses show the 95% probability contours—they have the same shape (orientation and spread) but
different centers.

Rotman
Commerce

RSM338 | Kevin Mott

30 /55

The LDA Discriminant Function

Start with the posterior from Bayes’ theorem:

Jie(X) 7t
2. 1}:1 [i(X)7;

P(y=k|x) =

Taking the log and plugging in the normal density:

InP(y=k|x)=In fx(xX)+1Inm — In ij(x)ﬂj
J

Ll LAillJ

same for all k

The normal density gives In i (X) = —gln(Zﬂ) - %ln 12| — %(X —)T (x =).

The first two terms don’t depend on K (shared covariance!). Expanding the quadratic and dropping terms that don’t
depend on k, we get the discriminant function:

1

_ el -1
Ok(X) =X X7 i —) ;CZ Hi + In 7 gggnnn?grce

RSM338 | Kevin Mott

30/55

P(y=k|x) = I‘;
2 o JiX)m;

Taking the log and plugging in the normal density:

InP(y=k|x)=Infx(x)+1Inm —In ij(x)ﬂj
J

N | N) B

same for all k

The normal density gives In [(X) = —gln(Zﬂ') - %ln 12| — %(X —)TN (x -).

The first two terms don’t depend on K (shared covariance!). Expanding the quadratic and dropping terms that don’t

depend on k, we get the discriminant function:

1
Or(x) = X' T g — 5 ;CZ_l Ui + In 7y

This is a scalar—one number for each class k. We classify X to the class with the largest discriminant:

y = arg maxx Ok(X).

. : : : Rotman
The discriminant function is linear in X—that’s why it’s called Linear Discriminant Analysis. Commerce

RSM338 | Kevin Mott

31/55

The LDA Decision Boundary

The decision boundary between classes k and £ is where:
Ok(X) = 0¢ (X)
This simplifies to:

7T¢

_ 1 _ _
X 27 (ke —) = 5 (HZ Y= p, =7) +In o

Thisis a linear equation in X—so the boundary is a line (in 2D) or hyperplane (in higher dimensions).

With K classes, we have K(K — 1)/2 pairwise boundaries, but only K — 1 of them matter for defining the decision
regions.

Rotman
Commerce

RSM338 | Kevin Mott

32/55

Estimating LDA Parameters

In practice, we estimate the parameters from training data:

Prior probabilities:

~ Nk
Tk = —
n

where 1 is the number of training observations in class K.

Class means:

Pooled covariance matrix:

K
A 1 n n
= TR & 2 (i H -)
k=l Lyi=k Rotman
Commerce

RSM338 | Kevin Mott

33 /55

The LDA Recipe

LDA

Model Each class K is a multivariate normal:

xly=k ~ O(uk, X)

Parameters Priors 7Tk = Ny /N, means [1};, pooled covariance 2

“Loss function” Not a loss function — parameters are estimated
directly from the data (sample proportions, sample
means, pooled covariance)

Classification rule Assign X to the class with the largest discriminant

Ok (X)

No optimization loop, no gradient descent. LDA computes its parameters in closed form — plug in the training data and
you’re done.

This is fundamentally different from logistic regression, which iteratively searches for the coefficients that minimRetman
Commerce

DSS-eNTIronv 1o
RSM338 | Kevin Mott

34 /55

LDA in Python

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

Combine the 3-class data
X_1lda = np.vstack([X1, X2, X31)
y_lda = np.array([@] * n_per_class + [1] % n_per_class + [2] * n_per_class)

Fit LDA
lda = LinearDiscriminantAnalysis()
lda.fit(X_1lda, y_1lda)

print("LDA Class Means:")
for k in range(3):

print(f" Class {k}: {lda.means_[k]}")

print(f"\nClass Priors: {lda.priors_}")

LDA Class Means:
Class 0: [0.00962094 -0.02608294]
Class 1: [3.00835928 0.12294623]
Class 2: [1.40152169 2.3715806 |

Class Priors: [0.33333333 0.33333333 0.33333333]

Visualize LDA decision boundaries
fig, ax = plt.subplots()

Commerce

Rotman
ax.scatter(X1[:, @], X1[:, 1], alpha=0.5, label='Class 0')

RSM338 | Kevin Mott

34 /55

ax.scatter(X1[:, @], X1[:, 1], alpha=0.5, label='Class 0')
ax.scatter(X2[:, 0], X2[:, 1], alpha=0.5, label='Class 1')
ax.scatter(X3[:, 0], X3[:, 1], alpha=0.5, label='Class 2')

Decision boundaries

Xx_range = np.linspace(-3, 6, 200)

y_range = np.linspace(-3, 5, 200)

X_grid, Y_grid = np.meshgrid(x_range, y_range)

grid_points = np.column_stack([X_grid.ravel(), Y_grid.ravel()])
Z = lda.predict(grid_points).reshape(X_grid.shape)

ax.contour(X_grid, Y_grid, Z, levels=[0.5, 1.5], colors='black', linewidths=2)
ax.set_xlabel('x_1")
ax.set_ylabel('$x_2%$")

_____ T L Y A B . W T . WL L D o Y [B B 1

LDA Decision Boundaries

o © © Class 0
Class 1
@ Class 2

-3 2 1 0 1 2 3 4 5 6 Rotman
X Commerce

RSM338 | Kevin Mott

35/55

Quadratic Discriminant Analysis (QDA)

LDA assumes all classes share the same covariance matrix 2.

Quadratic Discriminant Analysis (QDA) relaxes this: each class has its own covariance 2.

The discriminant function becomes:

1 1 _
Sk(x) = = In [Zk| = o (x = wi) By (x = i) + In 7

This is quadratic in X, giving curved decision boundaries.

Trade-off:

» LDA: More restrictive assumptions, fewer parameters to estimate, more stable

» QDA: More flexible, more parameters, can overfit with small samples

Rotman
Commerce

RSM338 | Kevin Mott

36 /55

LDA vs. QDA

LDA QDA

o ClassO 5 o Class0
Class 1 Class 1

X2
X2

When classes have different covariances, QDA captures the curved boundary while LDA is forced to use a straight line.

Rotman
Commerce

RSM338 | Kevin Mott

37 /55

Why LDA Works Well

LDA and QDA have good track records as classifiers, not necessarily because the normality assumption is correct, but
because:

1. Stability: Estimating fewer parameters (shared) reduces variance
2. Robustness: The decision boundary often works well even when normality is violated

3. Closed-form solution: No iterative optimization needed

When to use which:

» LDA: When you have limited data or classes are well-separated
» QDA: When you have more data and suspect different class shapes

» Regularized DA: Blend between LDA and QDA to control flexibility

Rotman
Commerce

RSM338 | Kevin Mott

38 /55

LDA vs. Logistic Regression

Both produce linear decision boundaries. When to use which?

Logistic Regression:

» Makes no assumption about the distribution of X
» More robust when the normality assumption is violated

» Preferred when you have binary features or mixed feature types

LDA:

» More efficient when normality holds (uses information about class distributions)
» Can be more stable with small samples

» Naturally handles multi-class problems

In practice, they often give similar results. Try both and compare via cross-validation.

Rotman
Commerce

RSM338 | Kevin Mott

39 /55

Part V: Evaluating Classification Models

Rotman
Commerce

RSM338 | Kevin Mott

40 /55

Beyond Accuracy

For regression, we use MSE or R? to measure performance.

For classification, accuracy (% correct) is the obvious metric:

Number Correct B TP +TN
Total TP+TN+FP +FN

Accuracy =

But accuracy can be misleading, especially with imbalanced classes.

Example: Predicting credit card fraud (1% fraud rate)
» Amodel that predicts “not fraud” for everyone achieves 99% accuracy!

» But it catches zero fraud cases—useless for the actual goal.

We need metrics that account for different types of errors.

Rotman
Commerce

RSM338 | Kevin Mott

41 /55

The Confusion Matrix

A confusion matrix summarizes all prediction outcomes:

Actual Positive Actual Negative

Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

» True Positive (TP): Correctly predicted positive

» False Positive (FP): Incorrectly predicted positive (Type | error)
» True Negative (TN): Correctly predicted negative

» False Negative (FN): Incorrectly predicted positive as negative (Type Il error)

Different applications care about different cells of this matrix.

Rotman
Commerce

RSM338 | Kevin Mott

42 /55

Key Metrics from the Confusion Matrix

Accuracy: Overall correct rate

TP +TN
TP+ TN+FP+FN

Accuracy =

Precision: Of those we predicted positive, how many actually are?

TP
TP +FP

Precision =

Recall (Sensitivity): Of the actual positives, how many did we catch?

TP
TP +FN

Recall =

Specificity: Of the actual negatives, how many did we correctly identify?

TN
TN + FP Rotman

Commerce

RSM338 | Kevin Mott

Specificity =

42 /55

A =
Y = P+ TN+FP +FN

Precision: Of those we predicted positive, how many actually are?

TP
TP +FP

Precision =

Recall (Sensitivity): Of the actual positives, how many did we catch?

TP
TP +FN

Recall =

Specificity: Of the actual negatives, how many did we correctly identify?

TN
I'N+FP

Specificity =

False Positive Rate: Of actual negatives, how many did we wrongly call positive?

FP e
FPR = TN+ FP - 1 — Specificity Rotman
Commerce

RSM338 | Kevin Mott

43 /55

Credit Default: Confusion Matrix

from sklearn.metrics import confusion_matrix, classification_report

Using our credit default data with logistic regression
y_pred = log_reg.predict(X)

Confusion matrix
cm = confusion_matrix(default, y_pred)
print("Confusion Matrix:")

print(f" Predicted No Predicted Yes")
print(f" Actual No {cm[0,0]:5d} {cm[0,1]:5d}")
print(f" Actual Yes {cm[1,0]:5d} {cm[1,1]:5d}")

Confusion Matrix:
Predicted No Predicted Yes

Actual No 961793 5207
Actual Yes 19202 13798
Metrics
TP = cm[1, 1]
TN = cm[0, O]
FP = cm[0, 1]
FN = cm[1, O]

print(f"\nMetrics:")

print(f" Accuracy: {(TP + TN) / (TP + TN + FP + FN):.1%}")
print(f" Precision: {TP / (TP + FP):.1%}" if (TP + FP) > 0 else " Precision: N/A") Rotman
print(f" Recall: {TP / (TP + FN):.1%}") Commerce

RSM338 | Kevin Mott

43 /55

Confusion matrix
cm = confusion_matrix(default, y_pred)
print("Confusion Matrix:")

print(f" Predicted No Predicted Yes")
print(f" Actual No {cm[0,0]:5d} {cm[0,1]:5d}")
print(f" Actual Yes {cm[1,0]:5d} {cm[1,1]:5d}")

Confusion Matrix:
Predicted No Predicted Yes

Actual No 961793 5207
Actual Yes 19202 13798
Metrics
TP = cm[1, 1]
TN = cm[0, O]
FP = cm[0, 1]
FN = cm[1, O]

print(f"\nMetrics:")

print(f" Accuracy: {(TP + TN) / (TP + TN + FP + FN):.1%}")
print(f" Precision: {TP / (TP + FP):.1%}" 1if (TP + FP) > 0 else " Precision: N/A")
print(f" Recall: {TP / (TP + FN):.1%}")
print(f" Specificity: {TN / (TN + FP):.1%}")
Metrics:
Accuracy: 97.6%
Precision: 72.6%
Recall: 41.85% Rotman
Specificity: 99.5% Commerce

RSM338 | Kevin Mott

44 /55

The Class Imbalance Problem

With 97% non-defaulters and 3% defaulters, the model is biased toward predicting “no default.”

Using threshold = 0.5, we have high accuracy (97%+) but low recall—we miss most actual defaults.

For a credit card company, missing defaults is costly! They’d rather:

» Catch more actual defaults (higher recall)

» Even if it means more false alarms (lower precision)

The 0.5 threshold isn’t sacred—we can adjust it based on business needs.

Rotman
Commerce

RSM338 | Kevin Mott

45 /55

Adjusting the Classification Threshold

Instead of predicting “default” when P (default) > 0.5, we can use a lower threshold:
Predict “default” when P (default) > 1

Lower threshold T:

» More predictions of “default”
» Higher recall (catch more true defaults)

» Lower precision (more false alarms)

Higher threshold T

» Fewer predictions of “default”

» Lower recall (miss more true defaults)

» Higher precision (fewer false alarms)

Rotman
Commerce

RSM338 | Kevin Mott

— 46 / 55

Effect of Threshold Choice

Try different thresholds
thresholds = [0.5, 0.2, 0.1, 0.05]
prob_pred = log_reg.predict_proba(X)[:, 1]

print("Effect of Threshold on Confusion Matrix Metrics:\n")

print(f"{'Threshold':>10} {'Accuracy':>10} {'Precision':>10} {'Recall':>10} {'FPR':>10}")
print("-" % 52)

for thresh in thresholds:
y_pred_thresh = (prob_pred > thresh).astype(int)
cm = confusion_matrix(default, y_pred_thresh)
TP, TN, FP, FN = cm[1,1], cm[0,0], cm[0,1], cm[1,0]

acc = (TP + TN) / (TP + TN + FP + FN)

-
prec = TP / (TP + FP) if (TP + FP) > @ else 0
rec = TP / (TP + FN)
fpr = FP / (TN + FP)
Effect of Threshold on Confusion Matrix Metrics:
Threshold Accuracy Precision Recall FPR
0.50 97.6% 72.6% 41.8% 0.5%
0.20 96.7% 50.25% 66.0% 2.2%
0.10 94.9% 37.0% 78.1% 4.5%
0.05 91.7% 26.7% 86.7% 8.1% Rotman

Commerce

RSM338 | Kevin Mott

46 / 55

Try different thresholds
thresholds = [0.5, 0.2, 0.1, 0.05]
prob_pred = log_reg.predict_proba(X)[:, 1]

print("Effect of Threshold on Confusion Matrix Metrics:\n")
print(f"{'Threshold':>10} {'Accuracy':>10} {'Precision':>10} {'Recall':>10} {'FPR':>10}")
print("-" % 52)

for thresh in thresholds:
y_pred_thresh = (prob_pred > thresh).astype(int)
cm = confusion_matrix(default, y_pred_thresh)
TP, TN, FP, FN = cm[1,1], cm[0,0], cm[0,1], cm[1,0]

acc = (TP + TN) /7 (TP + TN + FP + FN)

prec = TP / (TP + FP) if (TP + FP) > 0 else 0
rec = TP / (TP + FN)

fpr = FP / (TN + FP)

Effect of Threshold on Confusion Matrix Metrics:

Threshold Accuracy Precision Recall FPR
0.50 97.6% 72.6% 41.8% 0.5%
0.20 96.7% 50.2% 66.0% 2.2%
0.10 94,9% 37.0% 78.15% 4.55%
0.05 91.7% 26.7% 86.7% 8.1%

_owering the threshold from 0.5 to 0.1 dramatically increases recall (catching defaults) at the cost of more false
Rotman

nositives. Commerce

RSM338 | Kevin Mott

47 / 55

The ROC Curve

The Receiver Operating Characteristic (ROC) curve shows the trade-off between true positive rate (recall) and false
positive rate across all thresholds.

» X-axis: False Positive Rate (FPR)
» Y-axis: True Positive Rate (TPR = Recall)

As we lower the threshold:

» We move from bottom-left (predict nothing positive) toward top-right (predict everything positive)

» Good classifiers hug the top-left corner

ROC Curve for Credit Default Prediction

o
Qo
1

o
(&)
]

o
=Y
1

True Positive Rate (Recall)

Rotman
Commerce

o
N

—— RO e (AUC = (

RSM338 | Kevin Mott

47 / 55

~ The Receiver Operating Characteristic (ROC) curve shows the trade-off between true positive rate (recall) and false
positive rate across all thresholds.

» X-axis: False Positive Rate (FPR)
» Y-axis: True Positive Rate (TPR = Recall)
As we lower the threshold:

» We move from bottom-left (predict nothing positive) toward top-right (predict everything positive)

» Good classifiers hug the top-left corner

ROC Curve for Credit Default Prediction

O
(o4

o
o

o
=Y
1

True Positive Rate (Recall)

o
N

w—— ROC Curve (AUC = 0.963)
---- Random Classifier

0.0 +==
0.0 0.2 0.4 0.6 0.8 1.0 Rotman

False Positive Rate
Commerce

RSM338 | Kevin Mott

48 / 55

Area Under the ROC Curve (AUC)

The Area Under the Curve (AUC) summarizes the ROC curve in a single number:

» AUC = 1.0: Perfect classifier
» AUC =0.5: Random guessing (diagonal line)

» AUC <0.5: Worse than random (predictions inverted)

Interpretation: AUC is the probability that a randomly chosen positive example is ranked higher than a randomly chosen
negative example.

from sklearn.metrics import roc_auc_score

auc = roc_auc_score(default, prob_pred)
print(f"AUC for credit default model: {auc:.3f}")

AUC for credit default model: 0.963

AUC is useful for comparing models because it’s threshold-independent—it measures the model’s ability to rank
observations correctly.

Rotman
Commerce

RSM338 | Kevin Mott

49 /55

Choosing the Optimal Threshold

The “best” threshold depends on the costs of different errors:

» Cost of false negative (missing a default): CFN

» Cost of false positive (false alarm): Crp

If missing defaults is very costly (e.g., the bank loses the loan amount), we want a lower threshold to maximize recall.

Objective: Minimize total cost

Total Cost =cgny - FN +cgp + FP

Or equivalently, maximize:

Benefit=TP —c - FP

where C = Crp /CEN is the relative cost ratio.

Rotman
Commerce

RSM338 | Kevin Mott

Comparing Classifiers

50/55

Comparing Classifiers with ROC Curves

1.0 -
0.8 | Pl
8 -
& 0.6 - e
v e
Z -
.4: ‘_I
7))
o -
o -
v 0.4 1 o7
3 -
= o
0.2 T
~" = Logistic Regression (AUC = 0.963)
el - LDA (AUC = 0.963)
0.0 - - ---- Random
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

The ROC curves are nearly identical—both methods perform similarly on this dataset. The AUC provides a single number

for comparison.

RSM338 | Kevin Mott

Rotman
Commerce

51/55

Summary and Preview

Rotman
Commerce

RSM338 | Kevin Mott

52 /55

What We Learned Today

Classification predicts categorical outcomes—a core supervised learning task.

Linear probability model (regression with 0/1 outcome) fails because it can produce impossible probabilities.
Logistic regression uses the sigmoid function to model probabilities properly:

» Outputs are alwaysin (0, 1)

» Coefficients measure effect on log-odds

» Can beregularized (Lasso) for variable selection

Linear Discriminant Analysis takes a Bayesian approach:

» Models class-conditional distributions as normal

» Assumes shared covariance (LDA) or class-specific covariance (QDA)

» Often performs similarly to logistic regression

Rotman
Commerce

53 /55

Evaluation Metrics

Accuracy can be misleading with imbalanced classes.
The confusion matrix breaks down predictions into TP, FP, TN, FN.

Precision (of predicted positives, how many are correct?) and Recall (of actual positives, how many did we catch?)
capture different aspects of performance.

The ROC curve shows the trade-off across all thresholds.
AUC summarizes discriminative ability in a single number.

The optimal threshold depends on the costs of different types of errors.

Rotman
Commerce

RSM338 | Kevin Mott

54 /55

Next Week

Week 8: Nonlinear Classification

We’ll extend to methods that create nonlinear decision boundaries:

» k-Nearest Neighbors (k-NN): Classify based on nearby training points
» Decision Trees: Recursive partitioning of feature space

» Support Vector Machines: Find the maximum margin boundary

These methods can capture complex patterns that linear classifiers miss.

Rotman
Commerce

RSM338 | Kevin Mott

55 /55

References

» Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188.
» Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning (2nd ed.). Springer. Chapter 4.

» James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning (2nd ed.). Springer.
Chapter 4.

Rotman
Commerce

RSM338 | Kevin Mott

