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Today’s Goal

Last week we learned about regression and regularization. This week we connect machine learning to a core finance
problem: portfolio optimization.

The problem: We want to invest optimally, but we don’t know the true expected returns and covariances—we have to
estimate them from data.

Today’s roadmap:

1. Mean-variance utility: How do investors evaluate portfolios?

2. Optimal portfolios: Finding the best weights for single and multiple assets
3. The estimation problem: True parameters vs. estimated parameters

4. Estimation risk: Why optimized portfolios often disappoint

5. ML solutions: Using regularization (Lasso) to improve portfolio performance
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Recall: Mean-Variance Utility

From RSM332: investors care about the expected return and risk (variance) of their portfolio. Mean-variance utility
captures this trade-off:

U= E[R, —%Var(Rp)

expected return

risk

where Y > 0 is the risk aversion parameter — how much the investor dislikes variance. Higher ¥ means more risk-
averse: you demand more expected return to compensate for a given level of risk.

The investor wants to maximize this utility: earn as high a return as possible, penalized by how much risk they take on.

Empirical estimates suggest typical investors have ¥/ between 2 and 10. For Yy = 2 : accepting 1% more variance
requires roughly 1% more expected return to maintain the same utility.

The utility value has a concrete interpretation: the certainty equivalent — the guaranteed (risk-free) return that would
make the investor indifferent between holding the risky portfolio or receiving that guaranteed return for sure. A risk-
averse investor’s certainty equivalent is always below the expected return.
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Recall: Portfolio Mean and Variance

Suppose you hold N risky assets with weights W1, W2, ... , WN . Let ; denote the excess return of asset [ (return
above the risk-free rate). The portfolio excess returnis¥p = W1r1 + War2 + - + WNFN .

Expected excess return is the weighted average of individual expected excess returns:

N
E[rpl = ), wi Elri]
i=1

Variance includes both individual variances and all pairwise covariances:

N N
Var(rp) = )° ) wi w; Cov(ri,r))

i=1 j=1

In vector notation, stacking everything into vectors and matrices:

C[rp]l =w' Var(r,) = w' Zw
p p

Rotman
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C[rp] = W' Var(r,) = w' Zw
p p

where W is the N X 1 weight vector on risky assets only, i is the N X 1 vector of expected excess returns, and 2 is
the N X N covariance matrix. We don’t require W' 1 = 1 — the remainder 1 — w' 1is invested in the risk-free asset.

So mean-variance utility becomes:

U=w'u- ngEw

Maximizing this gives the MVO solution:

(i) Advanced: Deriving the MVO Solution
To find the maximum, take the gradient with respect to w and set it to zero. Using matrix calculus rules %(wTa) = a and %(WTAW) = 2AW (for symmetric A):
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Recall: From Efficient Frontier to Optimal Portfolio

In RSM332, you built up to mean-variance optimization in three steps:
1. Efficient frontier — Given IN risky assets, trace out the set of portfolios that offer the highest expected return for each
level of risk. These are the “best available” combinations of risky assets.

2. Capital Allocation Line (CAL) — Introduce a risk-free asset. Now the investor can mix the risk-free asset with the
tangency portfolio (the point where the CAL is tangent to the efficient frontier). The CAL gives the best possible risk-

return trade-off.

3. Optimal portfolio choice — Where on the CAL does the investor land? That depends on preferences — their risk
aversion Y. A more risk-averse investor (¥ high) holds more of the risk-free asset and less of the tangency portfolio. A less

risk-averse investor (¥ low) holds more risky assets, possibly leveraging.

Notice the MVO solution: X! MU gives the tangency portfolio weights — the same for every investor. The scalar % just

scales how much you invest in it versus the risk-free asset. Every optimal investor holds the same risky portfolio, justin
different amounts. That’s why they all land on the same line (the CAL).

S&P 500 stocks (2020-2024): Efficient frontier, CAL, and MVO
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tangency portfolio (the point where the CAL is tangent to the efficient frontier). The CAL gives the best possible risk-
return trade-off.

3. Optimal portfolio choice — Where on the CAL does the investor land? That depends on preferences — their risk
aversion Y. A more risk-averse investor (¥ high) holds more of the risk-free asset and less of the tangency portfolio. A less

risk-averse investor (¥ low) holds more risky assets, possibly leveraging.

Notice the MVO solution: X! MU gives the tangency portfolio weights — the same for every investor. The scalar % just

scales how much you invest in it versus the risk-free asset. Every optimal investor holds the same risky portfolio, just in
different amounts. That’s why they all land on the same line (the CAL).

S&P 500 stocks (2020-2024): Efficient frontier, CAL, and MVO

=
NN
1

=
N
1

=
o
1

o
o
1

NWA

o
(o))
1

Expected return

Ty — Efficient frontier
~— Capital Allocation Line

o
=Y
1

[ Risk-free rate (3%)
. Y Tangency portfolio
GL .
; % ANGN A Y = 2 (aggressive)
i 5%’“1@8‘: @® v =5 (moderate)
N . y = 15 (conservative)

o
N

0.0 - 3 N

O.IO 0.2 014 0.16 0j8
Risk (standard deviation) ggmgrce

RSM338 | Kevin Mott




6 /59

Recall: The Power of Diversification

The correlation between assets determines how much diversification helps. Lower correlation means more risk
reduction.

How Correlation Affects Diversification

0.12 1 Stacks
0.11 1

0.10 A

o
o
G}

Expected Return

o
o
o

0.06 1 Bonds

0.00 0.05 0.10 0.15 0.20
Standard Deviation (o)

With o = 1 (perfect correlation), there’s no diversification benefit — the opportunity set is a straight line. As correlation
decreases, the curve bends left, offering the same return with less risk.
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Why Revisit Mean-Variance Optimization?

The MVO solution W™ = %E_l W is elegant — but it has a hidden assumption: you need to know g and ..

In practice, you must estimate them from data. Recall from Week 2: plugging in estimates /,cAand O'2 in place of the true

parameters introduces estimation risk — additional uncertainty because our parameters are estimates, not truth. In
Week 2, we saw this bias wealth forecasts upward. Here the consequences are worse: the MVO formula amplifies

estimation error. Small errors in yhand 2. get multiplied through the matrix inverse > , producing wildly unstable
portfolio weights.

This is the same “nearly singular inverse blows up” problem from Week 5 — but now it’s your money on the line.
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The Gap Between Theory and Practice

In RSM332 (theory):

» M and 2 are known constants
» The optimization formula gives the truly optimal portfolio

» More assets = better diversification = higher utility

In practice:

» M and 2 must be estimated from noisy historical data
» The “optimal” portfolio is optimal for the estimated parameters, not the true ones

» More assets = more parameters to estimate = more estimation error = worse performance

This is one of the biggest puzzles in applied finance: theoretically optimal portfolios often perform worse than naive
strategies like equal weighting.

Today we’ll understand why, and how machine learning helps.
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Part I: Single Risky Asset
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Portfolio with One Risky Asset

Consider the simplest case: you can invest in one risky asset (say, a stock index) and a risk-free asset (T-bills).
Let W be the fraction of your wealth invested in the risky asset. Then (1 — W) is invested in the risk-free asset.

Let 7; denote the excess return of the risky asset at time £. The excess return is the return above the risk-free rate:
g = Rt — Rf

where R is the total return and R 7 is the risk-free rate.

Working with excess returns simplifies notation because the risk-free part of the portfolio contributes nothing to excess
return.
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Portfolio Mean and Variance

The excess return of the portfolio is simply:
rp,t =W " It

If you invest 60% in the risky asset (W = 0.6), your portfolio’s excess return is 60% of the risky asset’s excess return.

Taking expectations and using the properties from Week 1:

Expected excess return:

Mp=W " [
Variance:
03 =w* - o°
Standard deviation:
op=|w|-o
Rotman
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The Sharpe Ratio

Notice something interesting. When W > O (positive investment in the risky asset):

Fp _W K _H
o, W-0 O

The ratio of expected return to standard deviation is constant, regardless of how much you invest!

This ratio % is the Sharpe ratio of the risky asset. From RSM332, you may recall that the Sharpe ratio measures the

“reward per unit of risk.”

By adjusting W, you can move along a straight line in risk-return space, but you can’t improve the Sharpe ratio—it’s
determined by the risky asset itself.
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Finding the Optimal Weight

The investor’s problem: choose W to maximize utility.

Substituting the portfolio mean and variance into the utility function:

Uw) = wu - ngoz

This is a quadratic function of W—it opens downward (because the coefficient on w2

maximum.

is negative), so it has a unique

To find the maximum, we take the derivative with respect to W and set it equal to zero:

dU ,
— =u—-ywo” =0
dw M=V
Solving for W:
1
Lo LK
Yy o?
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Interpreting the Optimal Weight

The optimal weight formula:

%

U )

1
Yy o
Let’s interpret each piece:

> % : Less risk-averse investors (¥ smaller) invest more in the risky asset

» U:Higher expected return — invest more

) é: Higher variance — invest less

The ratio Lol is sometimes called the “reward-to-variance” ratio.

0-2
This is the foundation of mean-variance analysis, developed by Harry Markowitz in the 1950s—work that earned him
the Nobel Prize in Economics.
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Working with Real Data

Let’s compute the optimal weight using actual S&P 500 data:

import pandas as pd
import numpy as np

# Load S&P 500 data and compute annual total returns
sp500 = pd.read_csv('sp500 yf.csv', parse_dates=['Date'], index_col='Date"')
annual_prices = sp500['Close'].resample('YE').last()
annual_returns = annual_prices.pct_change().dropna()

# Load risk-free rate (10-year Treasury yield, in percent)

rf_data = pd.read_csv('DGS10.csv', parse_dates=['observation_date'], index_col='observation_date')
rf_datal['DGS10'] = pd.to_numeric(rf_datal'DGS10'], errors='coerce')
rf_annual = rf_datal['DGS10'].resample('YE"').mean() / 100

# Excess returns = total return minus risk-free rate
excess_returns = (annual_returns - rf_annual).dropna()

# Estimate mean and variance of excess returns

= T S e = P Thrm e o e e e f\

Sample period: 1962 - 2025
Number of years: T = 64

Mean excess return: [ = 2.88%

Standard deviation: 6 = 16.58%

Variance: 62 = 0.0275
Rotman
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Computing the Optimal Weight

Now apply the formulaw™ = % S

g2
# Optimal weight depends on risk aversion

gamma = 2 # moderate risk aversion
w_star = (1 / gamma) * (mu_hat / sigma2_hat)

print(f" wx = (1/{gamma}) x ({mu_hat:.4f} / {sigma2_hat:.4f})")
print(f" wx = {w_star:.2f}")

print(f"\nInterpretation: invest {w_star:.0%} in stocks, {1-w_star:.0%} in T-bills")

print(f"With y = {gamma}:")

With y = 2:
wkx = (1/2) x (0.0288 / 0.0275)
wk = 0.52

Interpretation: invest 52% in stocks, 48% in T-bills

# More risk-averse investor
gamma = 4
w_star_g4 = (1 / gamma) * (mu_hat / sigma2_hat)

print(f"With y = {gamma}:")
print(f" wx = {w_star_g4:.2f}")
print(f"\nInterpretation: invest {w_star_g4:.0%} in stocks, {1-w_star_g4:.0%} in T-bills")

Rotman
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Now apply the formulaw™ = % . £

g2

# Optimal weight depends on risk aversion
gamma = 2 # moderate risk aversion
w_star = (1 / gamma) * (mu_hat / sigma2_hat)

print(f"wWith y = {gamma}:")

print(f" wx = (1/{gamma}) x ({mu_hat:.4f} / {sigma2_hat:.4f})")
print(f" wx = {w_star:.2f}")

print(f"\nInterpretation: invest {w_star:.0%} in stocks, {1-w_star:.0%} in T-bills")

With y = 2:

wk = (1/2) x (0.0288 / 0.0275)
wx = 0.52

Interpretation: invest 52% in stocks, 48% in T-bills

# More risk—-averse investor
gamma = 4
w_star_g4 = (1 / gamma) * (mu_hat / sigma2_hat)

print(f"wWith y = {gamma}:")
print(f" wx = {w_star_g4:.2f}")
print(f"\nInterpretation: invest {w_star_g4:.0%} in stocks, {1-w_star_g4:.0%} in T-bills")

With vy = 4:
wk = 0.26
Rotman
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Visualizing the Optimal Portfolio

import matplotlib.pyplot as plt

# Compare different risk aversion levels
gammas = [2, 4, 10]
w_range = np.linspace(-0.5, 3.0, 100)

plt.figure()
for gamma in gammas:
# Compute utility curve for this gamma
utility = w_range * mu_hat - (gamma / 2) *x w_rangexx2 x sigma2_hat

# Compute optimal weight
w_star = (1 / gamma) * (mu_hat / sigma2_hat)
u_star = w_star *x mu_hat - (gamma / 2) * w_starxx2 *x sigma2_hat

# Plot utility curve and optimal point
plt.plot(w_range, utlllty, label=f'y = {gamma}, wk = {w_star:.2f}")

— N~ e o [T e o VSR St | —— Gl s e e e r \

Higher risk aversion = lower optimal stock weight

0.0 7——_ R \

—0.2 -

~0.4 1

0.6 1 Rotman
Commerce

Utility U(w)

RSM338 | Kevin Mott




17 /59

1Vl gCIIIIIIICI L1 gdlllllldbi
# Compute utility curve for this gamma
utility = w_range *x mu_hat - (gamma / 2) * w_rangexx2 *x sigma2_hat

# Compute optimal weight
w_star = (1 / gamma) * (mu_hat / sigma2_hat)
u_star = w_star * mu_hat - (gamma / 2) * w_starxx2 x sigma2_hat

# Plot utility curve and optimal point
plt plot(w_range, utlllty, label=f'y = {gamma}, wkx = {w_star:.2f}")

i PR TN S N U S | PP SR | - ANN  mm cml o o r\

Higher risk aversion = lower optimal stock weight
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Utility U(w)

-1014 — y=2,w*=10.52
— y =4, w*=0.26
— y =10, w*=0.10

-1.2 -

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Weight on risky asset (w)

Higher risk aversion (larger ¥) means more penalty for variance, so the investor holds less of the risky asset. The utility

, Rotman
curves become more “curved” (more concave) as ¥ increases. Commerce
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The Achieved Utility

What utility does the investor achieve at the optimal weight?

Substitutingw* = *#_ backinto the utility function:

yo?
N ok )4 *\2 2
U(w )—wu—z(w ) o
I N R S
]/0'2 ) },20-4
uroou
- yo?  2y0?
u?
- 2y0?
We can write this more compactly using the Sharpe ratio 6 = %:
B
Uw") = B Rotman
14 Commerce
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Part ll: The Estimation Problem
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From Theory to Practice

The optimal weight formula is elegant:

But there’s a problem: we don’t know U and o2,

These are the “true” population parameters—the expected return and variance that would emerge from the underlying
probability distribution of returns.

In practice, we have historical data and must estimate these parameters. The estimates are denoted with “hats”:

» U — the estimated expected return

2 i .
» 0 — the estimated variance
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Estimating Expected Return

Given I historical excess returnsr1,¥2, ... ,rT, the natural estimate of expected return is the sample mean:

In words: average the historical returns.

This is an unbiased estimator—on average, it equals the true (. But any particular estimate W will differ from U due to

randomness in the sample.
The estimate varies from sample to sample. This variability is the source of estimation risk.
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How Precise Is Our Estimate?

How confident should we be in our i4? Let’s construct a 95% confidence interval:

from scipy import stats
import numpy as np

# We already have annual_returns from earlier
T = len(annual_returns)

# Standard error of the mean
se = sigma_hat / np.sqrt(T)

# 95% confidence interval using t-distribution
t_crit = stats.t.ppf(0.975, T - 1)

ci_low = mu_hat - t_crit * se

ci_high = mu_hat + t_crit x se

print(f"Sample size: T = {T} years")

print(f"Standard error: SE = 6/VT = {sigma_hat:.4f}/V{T} = {se:.4f}")

print(f"Critical value: te.o7s5,{T-1} = {t_crit:.3f}")
Sample size: T = 75 years
Standard error: SE = 6/VT
Critical value: to.975,74

0.1658/v75 = 0.0191
1.993

95% Confidence Interval for u:
(-0.93%, 6.70%) Rotman
Commerce
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The Uncertainty Is Huge

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

# Plot the confidence interval

ax.errorbar([0], [mu_hat], yerr=[[mu_hat - ci_lowl, [ci_high - mu_hatl]],
fmt='o', capsize=10, capthick=2, markersize=10)

ax.axhline(y=mu_hat, linestyle='—-"', label=f'Point estimate: {mu_hat:.1%}"')

ax.set_x1im(-0.5, 0.5)

ax.set_ylim(o, 0.20)

ax.set_ylabel('Expected Excess Return')

ax.set _xticks([])

ax.set_title(f'95% CI for expected excess return: [{ci_low:.1%}, {ci_high:.1%}]")

ax. legend()

plt.show()

pr1nt(f"W1dth of CI: {ci_high - ci_low:.1%}")

R S T A | B ol P - - P R = T R S & Al — R~ E—— — NN

95% CI for expected excess return: [-0.9%, 6.7%]
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-== Point estimate: 2.9%
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ax.errorbar(¥], Lmu_hat], yerr=|lmu_hat — cil_lowl, lcl_high — mu_hat]],
fmt='o', capsize=10, capthick=2, markersize=10)
ax.axhline(y=mu_hat, linestyle='—-', label=f'Point estimate: {mu_hat:.1%}")
ax.set_x1im(-0.5, 0.5)
ax.set_ylim(Q, 0.20)
ax.set_ylabel('Expected Excess Return')
ax.set_xticks([])
ax.set_title(f'95% CI for expected excess return: [{ci_low:.1%}, {ci_high:.1%}]"')
ax. legend()
plt.show()

print(f"Width of CI: {ci_high - ci_low:.1%}")

R S T A | B ul P - - - am ameam e s s em e e e Lo ia = imrim o dema o Al — R~ E—— — NN

95% CI for expected excess return: [-0.9%, 6.7%]

0.200
=== Point estimate: 2.9%
0.175 A
0.150 A
2 0.125 |
2
% 0.100 -
L
i
© 0.075 -
<
0.050 A
0.0254 T TTTTTTTTTTTTTTTTTTTT T (i
0.000
Width of CI: 7.6% Rotman
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Why Is Expected Return So Hard to Estimate?

The precision of our estimate depends on:

1. Sample size (1'): More data helps, but improvement is slow (L)

VT

2. Volatility (0): Higher volatility means more noise, making estimation harder

# Signal-to—-noise ratio for stocks 1s terrible
print(f"Mean excess return (signal): {mu_hat:.1%}")

print(f"Std deviation (noise): {sigma_hat:.1%}")
print(f"Signal-to-noise ratio: {mu_hat/sigma_hat:.2f}")
Mean excess return (signal): 2.9%
Std deviation (noise): 16.6%
Signal-to-noise ratio: 0.17

The expected return is small relative to the volatility. To cut our uncertainty in half, we’d need four times as much data!

This is why Goyal and Welch (2008) found that most return predictors fail out-of-sample—expected returns are simply
very hard to estimate.

Rotman
Commerce

RSM338 | Kevin Mott



25/59

Estimation Uncertainty Propagates to Weights

If we use the estimated mean to compute the optimal weight:

o K

yo?

2

(For now, assume 0~ is known.)

Under the assumption that returns are i.i.d. normal:

Since W is proportional to /,cfit inherits this uncertainty:

R 1
w~N (w*, )
Ty?c?

The estimated weight varies around the true optimal weight w*. Rotman
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How Wrong Can the Weight Be?

The uncertainty in U translates directly into uncertainty about the optimal weight:
gamma = 4

# Optimal weight at each end of the confidence interval
w_low = ci_low / (gamma * sigma2_hat)
w_high = ci_high / (gamma * sigma2_hat)

print(f"95% CI for p: ({ci_low:.2%}, {ci_high:.2%})")

print(f"\nWith y = {gamma}, the optimal weight wx = p / (yo2?) could be:")

print(f" If p = {ci_low:.2%}: wx = {ci_low:.4f} / ({gamma} x {sigma2_hat:.4f}) = {w_low:.2f}")
print(f" If p = {ci_high:.2%}: wx = {ci_high:.4f} / ({gamma} x {sigma2_hat:.4f}) = {w_high:.2f}")
print(f"\nRange of plausible weights: ({w_low:.0%}, {w_high:.0%})")

print(f"\nThis is a huge range for such a basic investment decision!")

95% CI for p: (-0.93%, 6.70%)

With y = 4, the optimal weight wkx = p / (yo?) could be:
If u = -0.93%: wx = -0.0093 / (4 x 0.0275) = -0.08
If p=6.70%: wk = 0.0670 / (4 x 0.0275) = 0.61

Range of plausible weights: (-8%, 61%)

This is a huge range for such a basic investment decision!

The estimation uncertainty directly translates into uncertainty about how to invest. Rotman
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Part lll: Utility Loss from Estimation
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The Cost of Using Estimated Weights

When we use the estimated weight W instead of the true optimal W™, we achieve lower utility.

The utility from the estimated weight (evaluated at the true parameters U, 0'2):
Uw) = wu — gw'gcr2

Since W varies randomly, we look at the expected utility:

C[U(w)] = E [w'}x —~ gw'gaz]

Using properties of the normal distribution (specifically that -[w’g] = (w*)? + Var(w)):

1
2Ty

F[U(w)] = U(w™)

Rotman
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Understanding the Utility Loss

The expected utility loss from estimation is:

Utility Loss = U(w™) — E[U(w)] = 3Ty

This tells us:

» More data (1" larger) helps: The loss decreases as %

» More risk-averse investors lose less: Higher ¥ means smaller positions, less exposed to estimation error

ForT = 10yearsandy = 2:

1
11 = =0.02
Utility Loss %10 %2 0.025

This is 2.5 percentage points of certainty-equivalent return lost to estimation error—a significant cost!

Rotman
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The Reality Is Even Worse

2

Our analysis assumed 0“ was known. In practice, we estimate it too:

1 T
2 Y.
U_T—lé(rt M)

: A 2 .. 1 : : e
With both ( and 0 estimated, the utility loss is larger. The exact formula is more complex, but the intuition is the same:

» Using estimated parameters instead of true parameters costs us utility
» The loss decreases with more data, but slowly

» Short samples (typical in finance) lead to substantial estimation risk

Rotman
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Part IV: Multiple Risky Assets

Rotman
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Extending to Many Assets

Now consider N risky assets instead of just one. Let:

» It bethe N X 1 vector of excess returns at time ¢t
» W bethe N X 1 vector of expected excess returns

» 2 bethe N X N covariance matrix

From Week 1, recall that the covariance matrix 22 contains:

» Variances on the diagonal: 2; = Var(r;)

» Covariances off the diagonal: 2;; = Cov(r;,7 )

The portfolio weight vectorisw = (W1, W2, ... , WN )T, where W;j is the fraction invested in asset L.

Rotman
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Portfolio Mean and Variance (Vector Form)

The portfolio excess return is:

N

-
pt =W I't = E WiFit
i=1

The expected portfolio excess return:

N
Up=W =) Wil
i=1

The portfolio variance:

N N
CT%===VVT}EVV== :E:‘:E:lLulvjiﬂU
i=1 j=1

These are the natural generalizations of the single-asset formulas to vectors and matrices. Rotman
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The Optimal Portfolio (Multiple Assets)

The investor maximizes:

Uw)=w'u- gWTZW

Taking derivatives and setting equal to zero (multivariate calculus):

oU
— =u—yxw=>_0
oW i
Solving for w:
1
/4
This is the multi-asset analog of W™ = 71:2 . The covariance matrix 2 generalizes o2, and we need its inverse >
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Understanding the Multi-Asset Formula

The matrix ! plays a crucial role:

» It accounts for diversification—assets with low correlations get higher weights

» It adjusts for different volatilities—more volatile assets get lower weights (all else equal)

» It’s the multivariate version of dividing by variance

The optimal portfolio utility:

fan
Uw") = 2—)/’ where 6% = yTE_lﬂ

Here B is the Sharpe ratio of the optimal (tangency) portfolio.
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Estimation with Multiple Assets

As before, we must estimate the parameters from data:

t=1
1 T
v AT
2= T_1 Zl(rt—ﬂ‘)(rt—ﬂ)
And we plug these into the formula:
~ 1 ~1 .
wW=—-2 u

For now, let’s assume X is known (to isolate the effect of estimating ).
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The Utility Loss Grows with N

When we use estimated weights with IN assets:

N
2yT

[UW)] = U(w")

Compare this to the single-asset case (utility loss = 2)/—T)'

The utility loss is now proportional to N, the number of assets!

With more assets:

» More expected returns to estimate
» Each estimate has error

» Errors compound in the optimization

This is a fundamental problem: diversification benefits come at the cost of estimation risk.
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A Sobering Example

Consider N = 25 assets with T = 60 months (5 years) of dataand ¥y = 2:

. 25
Utility Loss = %2 x 60 - 0.104

That’s a loss of 10.4 percentage points of certainty equivalent!

If the true optimal utility is U(w*) = 0.15 (a 15% certainty equivalent), the expected utility with estimated weights is
only:

F[U(W)] =0.15-0.104 = 0.046

Estimation error wipes out most of the benefit of optimization.
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PartV: The Sample vs. Population Frontier
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Two Different Frontiers

Population frontier: The efficient frontier computed using the true parameters § and 2. This is what we’d see if we
knew the actual probability distribution.

Sample frontier: The efficient frontier computed using estimated parameters [fand 2. This is what we actually
compute from historical data.

Kan and Smith (2008, Management Science) studied the relationship between these frontiers.

Their finding: The sample frontier systematically overstates the true investment opportunities.
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Why Is the Sample Frontier Overly Optimistic?

The sample frontier uses estimated parameters that are “tuned” to the historical data.

By chance, some assets had unusually high returns or low correlations in the sample. The sample frontier exploits these
patterns, making it look better than it really is.

This is in-sample optimization at work—the same phenomenon we saw with regression in Week 5.

When we actually invest using the sample-optimal portfolio, we’re likely to be disappointed because the estimated
patterns won’t persist perfectly out of sample.
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Visualizing the Problem

Sample Frontier Is Overly Optimistic (T=60, N=10)

= True (Population) Frontier P
. -
== Sample Frontier ’,-*
0.4 A PR
’f
’I
’/
’f
-
’#

c 0.3 1 -~
o
Q
o
o
S
@ 0.2
o
>
(W N]

0.1 1

0.0 -

0.1 0.2 0.3 0.4 0.5
Standard Deviation

The sample frontier (red dashed) lies above and to the left of the true frontier (blue solid)—it promises higher returns for
less risk, but this is anillusion.
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Out-of-Sample Performance Is Worse

What happens when we invest based on the sample-optimal weights?

In-Sample Promise vs. Out-of-Sample Reality

In-Sample (Estimation)
30 A Out-of-Sample (Reality)
= = True Optimal: 0.68

N
(9]
]

N
o
]

Frequency

= =
o wn
1 1

(9]
]

-1.0 -0.5 0.0 0.5 1.0 1.5
Sharpe Ratio

In-sample Sharpe ratios (what optimization promises) are much higher than out-of-sample Sharpe ratios (what we
actually achieve).
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The Effect of Sample Size and Dimensionality

The problem worsens as:

» Sample size (1') decreases: Less data means noisier estimates

» Number of assets (IN) increases: More parameters to estimate, more opportunities for overfitting

When N is close to 1", the sample covariance matrix becomes nearly singular (hard to invert), and the sample-optimal
weights become extreme and unstable.

This is exactly like overfitting in regression—too many parameters relative to the data.
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How the Frontier Deteriorates
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= True = True
— = Sample — = Sample
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g (0]

With more data (larger 1), the sample frontier converges to the true frontier. With little data, the gap is substantial.
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Part VI: Dealing with Estimation Risk
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Approaches to Reduce Estimation Risk

Several strategies have been proposed:

1. Avoid optimization altogether: Use simple rules like equal weights (W; = 1/N)

2. Impose structure: Use factor models to reduce the number of parameters

3. Add constraints: Short-selling restrictions or bounds on weights

4, Target the minimum variance portfolio: It doesn’t depend on estimated expected returns

5. Combine portfolios optimally: Blend the tangency and minimum variance portfolios (Kan and Zhou, 2007)

6. Use regularization: Apply ML techniques like Lasso to shrink unstable weights
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The 1/N Portfolio

The simplest approach: invest equally in all assets.

1
wi = N for all i

No estimation required!
DeMiguel, Garlappi, and Uppal (2009) compared 14 sophisticated portfolio optimization strategies to 1/N. Their finding:
None of the optimized portfolios consistently outperformed 1/N out of sample.

This is remarkable: decades of portfolio theory, and we often can’t beat naive diversification. The reason? Estimation
error overwhelms the benefits of optimization.
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The Global Minimum Variance Portfolio

Another robust option: the global minimum variance (GMV) portfolio — the portfolio with the lowest possible variance.

¥11
1'X-11

WGMV =

where 1 is a vector of ones. This is the vertex of the efficient frontier — the leftmost point, where risk is minimized

regardless of return.

The GMV Portfolio: Vertex of the Efficient Frontier
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ATIOLTICT TODUSL OPLIVITIL. LTINS glORAl ITHTHITIUIT] variarnce (Uiviv) porutaouo — LUic portouo willl tne towest possSIivic vdiidriiee,

>11
1'2-11

WGMV =

where 1 is a vector of ones. This is the vertex of the efficient frontier — the leftmost point, where risk is minimized
regardless of return.

The GMV Portfolio: Vertex of the Efficient Frontier
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The GMV portfolio doesn’t depend on estimated expected returns — only on 2. Since covariances are estimatedﬁngﬁnan

precisely than means, the GMV portfolio is more stable than the tangency portfolio. Commerce
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From MVO to Regression

For a risk budget 0, the mean-variance portfolio problem is:

argmax W' u subjectto W'Iw < 0”

W

The explicit solution is W™ = \%E_l WU, which requires inverting 2 — unstable when NN is large relative to T'. It can be

shown (we skip the derivation) that the quantity ﬂTZ_l M is the squared Sharpe ratio of the optimal (tangency)
portfolio in MVO. Call it 8.

Ao, Li, and Zheng (2019, Review of Financial Studies) prove that this constrained optimization is equivalent to an
unconstrained regression:

. 1+6
w' =argmin E [(rC — wTr)z] , Wherer. =0

" Vo

This avoids the matrix inversion entirely and opens the door to Lasso regularization.
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MAXSER: Estimating ¥ and Running Lasso

1+6

The regression on the previous slide requires v, = O Nk which depends on 6 = ﬂTE_l U — the thing we’re trying to

estimate in the first place. So we need an estimate O.

The plug-in (sample) estimate is:
e A
93 SN L z H

But O is heavily biased upward when N/T isn’t negligible — the same estimation-risk problem from earlier in this
lecture. So we use the bias-corrected estimator from Kan and Zhou (2007):

o (T-N-2)6; —N
- T

Ao et al. use a further adjusted version Qadj (their equation 1.32) to ensure 6 stays non-negative. Once you have 0, you

compute ¢ and run Lasso:

T Rotman
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o (T-N-2)6; —N
- T

Ao et al. use a further adjusted version Gadj (their equation 1.32) to ensure O stays non-negative. Once you have 6, you
compute ¥ and run Lasso:

T
A . 1 A
WMAXSER = arg min — Z(rc — WTr,;)2 + Alwl 1
A\
t=1

This is MAXSER — Maximum Sharpe Ratio Estimated by Sparse Regression. Cross-validation picks A, just like in standard
Lasso.

A ~1
Note that computing Gs still requires X  — but only to produce a single scalar, not N portfolio weights. In plug-in

MVO, the noisy inverse fans out into N unstable weight estimates. Here, the errors collapse into one number whose bias
is well-characterized and correctable (the Kan-Zhou formula). Once you have r¢, the actual weight estimation is pure
Lasso on raw returns — no inverse needed. The matrix inverse is quarantined to estimating a correctable scalar rather

than directly determining all N weights.

: .. Rotman
You’ll implement this in Lab Report 4. Commerce
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What MAXSER Gives You

MAXSER estimates a single portfolio: the tangency portfolio — the risky-asset portfolio with the highest Sharpe ratio.
Recall that once you have the tangency, every investor just mixes it with the risk-free asset along the CAL. Risk aversion

¥ determines how far along the line you go. So estimating the tangency well is the whole game.

~1 .
Plug-in tangency (X u, normalized) — uses all N assets with wildly unstable weights. High in-sample Sharpe, but

this is overfitting: the optimizer exploits sample noise. Out of sample, the portfolio disappoints.

MAXSER tangency (Lasso regression with bias-corrected 1, normalized) — sets most weights to exactly zero, invests in

a sparse subset. Remaining weights are shrunk, preventing extreme positions. Lower in-sample Sharpe (honestly so),
but more stable and often better out of sample.

This is overfitting vs. regularization — the same trade-off from Week 5, now applied to portfolios. You’ll implement
MAXSER and compare it to plug-in MVO in Lab Report 4.
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Choosing the Regularization Parameter

How do we choose A?

Option 1: Cross-validation to maximize out-of-sample Sharpe ratio

Option 2: Cross-validation to match a target risk level

Option 3: Use an adjusted estimator for the Sharpe ratio that corrects for bias

The cross-validation approach is exactly what we learned in Week 5:
1. Split data into folds
2. For each A, fit on training folds, evaluate on test fold

3. Choose A that gives best out-of-sample performance
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Summary of ML Solutions

Method Advantages Disadvantages

1/N No estimation, simple lgnores all information

GMV lgnores noisy means Suboptimal if means are predictable
Constraints Intuitive bounds Ad hoc, may over-constrain

MAXSER (Lasso) Principled, sparse, stable Requires tuning A

The ML approach (MAXSER) provides a principled way to balance:

» Using information in the data (through estimation)

» Not overfitting (through regularization)
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Summary and Preview
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What We Learned Today

Mean-variance utility provides a framework for ranking portfolios based on expected return and risk.

Optimal portfolios maximize utility, but the formulas require knowing true parameters @ and ..

Estimation risk arises because we must estimate parameters from limited data. This creates:

» Uncertainty in optimal weights
» Utility loss compared to the theoretical optimum

» Overly optimistic sample efficient frontiers

The curse of dimensionality: Utility loss grows linearly with the number of assets N.
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The ML Connection

This week showed that portfolio optimization is essentially a prediction problem:

» We're predicting which assets will perform well
» Overfitting (to historical patterns) is a major concern

» Regularization techniques from ML help control overfitting

The MAXSER approach directly applies Lasso regression to portfolio construction, demonstrating that ML isn’t just for
prediction—it’s also for decision-making under uncertainty.

This theme—using ML to improve financial decisions—continues throughout the course.
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Next Week

Week 7: Linear Classification

We move from predicting continuous outcomes (regression) to predicting categories:

» Is a firm likely to default? (yes/no)
» Will the market go up or down? (up/down)

» What sector does a company belong to?

Classification is another core supervised learning problem with many applications in finance.
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