1/45

RSM338: Machine Learning in Finance
Week 4: Clustering | January 28-29, 2026

Kevin Mott

Rotman School of Management

Rotman
Commerce

RSM338 | Kevin Mott

2 /45

Today’s Goal

This week we learn our first unsupervised learning technique: clustering.

The problem: Given a set of objects (stocks, countries, customers), can we group them into meaningful clusters based
on their characteristics?

Today’s roadmap:

1. What is clustering? Unsupervised learning and why it matters

2. Measuring similarity: How do we decide if two objects are “close”?
3. K-Means clustering: The workhorse algorithm

4. Choosing K: How many clusters should we use?

5. Hierarchical clustering: An alternative approach with dendrograms

Rotman
Commerce

RSM338 | Kevin Mott

3/45

Part I: What is Clustering?

Rotman
Commerce

RSM338 | Kevin Mott

4 /45

Supervised vs Unsupervised Learning

Recall from Week 3:

Supervised learning: We have labeled data—we know the “right answer” for each observation.

» Regression: predict a continuous Y (e.g., stock returns)

» Classification: predict a categorical y (e.g., default/no default)

Unsupervised learning: We have no labels—we’re looking for structure in the data itself.
» Clustering: group similar observations together

» Dimensionality reduction: find underlying patterns (e.g., PCA)

Clustering asks: Can we discover natural groupings in the data without being told what to look for?

Rotman
Commerce

RSM338 | Kevin Mott

5/45

What is Clustering?

Goal: Group objects into subsets (clusters) so that:

» Objects within a cluster are similar to each other

» Objects in different clusters are dissimilar

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

Generate clustered data

np.random.seed(42)
X, y = make_blobs(n_samples=150, centers=3, cluster_std=0.8)

fig, axes = plt.subplots(1l, 2)

Before clustering

axes[0].scatter(X[:, 0], X[:, 11)
axes[0].set_title('Raw data: Can you see groups?')
axes[0].set_xlabel('Feature 1')
axes[0].set_ylabel('Feature 2')

After clustering (colored by true cluster)

PR . B | PR T Ty BV 2 nl AV 1 1 PR |

Raw data: Can you see groups? After clustering: Groups revealed

Rotman
Commerce

®
r‘ -t

10.0 ° 2%, 10.0
.

RSM338 | Kevin Mott

5/45

X, Y = make_blobs(n_samples=150, centers=3, cluster_std=0.8)
fig, axes = plt.subplots(1, 2)

Before clustering

axes[@0].scatter(X[:, 01, X[:, 11)
axes[0].set_title('Raw data: Can you see groups?')
axes [0].set_xlabel('Feature 1'")
axes[0].set_ylabel('Feature 2')

After clustering (colored by true cluster)

P N B | -~ mmdede m T . n1 wil. I | ———c oo)
Raw data: Can you see groups? After clustering: Groups revealed
10.0 - 10.0 -
7.5 - 7.5 -
5.0 - 5.0 -
r; 2.5 1 r; 2.5 A
§ oo 8 00+
~2.5 1 =2.5
®
—5.0 1 —5.0 -
—7.5 - =7.5 1
10 -8 -6 -4 -2 0 2 4 6 10 -8 -6 -4 -2 0 2 4 6
Feature 1 Feature 1
: C L : : Rotman
The algorithm’s job is to find these groups automatically. Commerce

RSM338 | Kevin Mott

6 /45

Why Clustering in Finance?

Customer segmentation:

» Group clients by trading behavior, risk tolerance, portfolio characteristics

» Tailor products and services to each segment

Stock classification:

» Group stocks by return patterns, volatility, sector characteristics

» Find “peer groups” for relative valuation

Country risk assessment:

» Cluster countries by economic indicators

» Identify which countries share similar risk profiles

Regime detection:

» Identify different “market states” (bull, bear, high volatility, etc.)

» A rading strategi he current regime
dapt trading strategies to the current reg Rotman

Commerce

RSM338 | Kevin Mott

7145

Finance Example: Country Risk

Suppose we want to cluster 122 countries based on their “riskiness” for foreign investment.

We have 4 risk measures for each country:

Measure Source What it captures
GDP growth rate IMF Economic health
Corruption index Transparency Institutional quality

International

Peace index Institute for Political stability
Economics and
Peace

Legal risk index Property Rights Rule of law
Association

Each country is described by a vector of 4 numbers: X; = (Xi1 , Xi2 , Xi3 , Xi4) Rotman

Commerce

Clustering will group countries with similar risk profiles together.
RSM338 | Kevin Mott

8 /45

Describing Objects with Features

In clustering, each object is described by a set of features (also called attributes or variables).

Notation: Object I has p features:
X; = (Xi1,Xi2,.-- »Xip)
where X;j is the value of feature j for object .

Examples:

» Stock: X; = (avg return, volatility, beta, market cap)
» Country:X; = (GDP growth, corruption, peace index, legal risk)

» Customer:X; = (age,income, trade frequency, portfolio size)

We can think of each object as a point in p-dimensional space.

Rotman
Commerce

RSM338 | Kevin Mott

9/45

Part Il: Measuring Similarity

Rotman
Commerce

RSM338 | Kevin Mott

10/45

How Do We Measure “Closeness”?

To cluster objects, we need to quantify how similar (or dissimilar) two objects are.

We typically measure distance—smaller distance means more similar.

The question: If object I has features X; = (Xj1, Xi2, ... , Xip) and object J has featuresX; = (Xj1,Xj2,... , Xjp),
how far apart are they?

We need a function d(X;, X;) that tells us the distance between any two objects.

Rotman
Commerce

RSM338 | Kevin Mott

11/45

Euclidean Distance

The most common choice is Euclidean distance—the “straight line” distance you learned in geometry.

In 2 dimensions (two features):

d(xi,xj) = 1/ (X1 — xj1)* + (X2 — Xj2)°

This is just the Pythagorean theorem!

fig, ax = plt.subplots()
Two points

pl = np.array([1, 2])

p2 = np.array([4, 6])

Plot points

ax.scatter([pl[o], p2[0]]l, [p1[1l], p2[1]], s=100)
ax.annotate('$\\mathbf{x};_i = (1, 2)$', pl, xytext=(pl[0]-0.8, pl[1]-0.5))
ax.annotate('$\\mathbf{x}_j = (4, 6)$', p2, xytext=(p2[0]+0.1, p2[1]+0.3))

Draw the distance line
ax.plot([pll[@], p2[0]], [p1l1], p2[1]], 'k—"')

Draw the right triangle
ax.plot([p1l[@], p2[0]], [p1l1], p1l1]], 'b:")
ax.plot([p2[@], p2[0]1, [p1l[1]l, p2[1]1, 'b:') Rotman

ax.text(2.5, 1.5, '$\\Delta x 1 = 3%') Commerce

11/45

M< = NHpP«dAllay\ L4, 0O])

Plot points

ax.scatter([pl[o], p2[0]], [p1l[1l], p2[1]], s=100)
ax.annotate('$\\mathbf{x};_i = (1, 2)$', pl, xytext=(pl[0]-0.8, pl[1]-0.5))
ax.annotate('$\\mathbf{x}_j (4, 6)%$', p2, xytext=(p2[0]+0.1, p2[1]+0.3))

Draw the distance line
ax.plot([pll[@], p2[0]], [p1l1], p2[1]], 'k—"')

Draw the right triangle

ax.plot([p1[@], p2[0]], [p1l[1], p1l[1]], 'b:")
ax.plot([p2[0], p2[0]], [p1l[1], p2[1]], 'b:")
ax.text(2.5, 1.5, '$\\Delta x_1 = 3$"')

R S L A B o A LAY\ MaTlda .. ™ . AATL1N

Euclidean distance: V32 +42 =5

Feature 2
N
\
\

xi=(1,2) Ax, =3

° i : : "‘ 5" ° Rotman
Feature 1
Commerce

RSM338 | Kevin Mott

12/45

Euclidean Distance: General Formula

In p dimensions (with p features), Euclidean distance generalizes to:
E—
d(xi,Xj) = Z(xik — Xjk)

Here I and] index the two objects, and k indexes the features (from 1 to D).
In words: take the difference in each feature, square it, sum them all up, then take the square root.

Using vectors (from Week 1):
d(Xi,Xj) = ||Xi — Xj"

where | - | denotes the Euclidean norm (length) of a vector.
import numpy as np

Two countries with 4 risk measures each
country_A = np.array([2.1, 45, 1.8, 60]) # (GDP growth, corruption, peace, legal)

country_B = np.array([3.5, 72, 2.1, 45]) Rotman
Commerce

RSM338 | Kevin Mott

12/45

V K=1

Here I and] index the two objects, and k indexes the features (from 1 to D).

In words: take the difference in each feature, square it, sum them all up, then take the square root.

Using vectors (from Week 1):
d(Xi,Xj) = ||Xi — Xj"

where | - | denotes the Euclidean norm (length) of a vector.

import numpy as np

Two countries with 4 risk measures each
country_A = np.array([2.1, 45, 1.8, 60]) # (GDP growth, corruption, peace, legal)
country_B = np.array([3.5, 72, 2.1, 45])

Euclidean distance
distance = np.sqrt(np.sum((country_A - country_B)*x2))
print(f"Distance between countries: {distance:.2f}")

Shortcut using numpy
distance_np = np.linalg.norm(country_A - country_B)
print(f"Using np.linalg.norm: {distance_np:.2f}")

Distance between countries: 30.92 Rotman
Using np.linalg.norm: 30.92 Commerce

RSM338 | Kevin Mott

13/45

The Problem with Raw Features: Scale

Consider clustering countries by GDP growth (in %) and GDP level (in billions §).

» GDP growth ranges from -5% to +10%
» GDP level ranges from $1B to $20,000B

If we compute Euclidean distance on raw values, GDP level will completely dominate!
A difference of $100B in GDP will swamp a difference of 5% in growth rate.

Raw features (growth %, GDP in billions)

country_A = np.array([2.0, 500]) # 2% growth, $500B GDP
country_B = np.array([7.0, 510]) # 7% growth, $510B GDP
country_C = np.array([2.5, 5000]) # 2.5% growth, $5000B GDP
Distances from A

d_AB = np.linalg.norm(country_A - country_B)

d_AC = np.linalg.norm(country_A - country_C)

print(f"Distance A to B: {d_AB:.1f}")
print(f"Distance A to C: {d_AC:.1f}")
print("B is 'closer' to A despite very different growth rates!")

Distance A to B: 11.2
Distance A to C: 4500.0

B is 'closer' to A despite very different growth rates! Rotman
Commerce

RSM338 | Kevin Mott

14/ 45

The Solution: Standardization

Before clustering, we standardize (or normalize) each feature to have mean 0 and standard deviation 1.

For each feature J, compute:

where:

» Xj is the mean of feature j across all objects

» S isthe standard deviation of feature j

This puts all features on the same scale—a 1-unit difference in any standardized feature represents “one standard

deviation.”

from sklearn.preprocessing import StandardScaler

Stack countries into a matrix
X = np.array([[2.0, 500], [7.0, 510], [2.5, 5000]])

Standardize Rotman
Commerce

scaler = StandardScaler()
RSM338 | Kevin Mott

14 /45

where:

» Xj is the mean of feature J across all objects

» S isthe standard deviation of feature j

This puts all features on the same scale—a 1-unit difference in any standardized feature represents “one standard
deviation.”

from sklearn.preprocessing import StandardScaler

Stack countries into a matrix
X = np.array([[2.0, 500], [7.0, 510], [2.5, 5000]])

Standardize
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

print("Standardized features:")
print(X_scaled)

Standardized features:

[[-0.81537425 -0.70946511]
[1.4083737 -0.70474583] Rotman
[-0.59299945 1.41421094]] cOmmerce

RSM338 | Kevin Mott

15/45

After Standardization

Now compute distances on standardized features
d_AB_scaled = np.linalg.norm(X_scaled[@] - X_scaled[1])
d_AC_scaled = np.linalg.norm(X_scaled[@] - X_scaled[2])

print(f"Distance A to B (standardized): {d_AB_scaled:.2f}")
print(f"Distance A to C (standardized): {d_AC_scaled:.2f}")
print("Now B is farther from A (very different growth rates matter!)")

Distance A to B (standardized): 2.22
Distance A to C (standardized): 2.14
Now B is farther from A (very different growth rates matter!)

Rotman
Commerce

16 /45

- Visualizing the Effect of Standardization

= plt.subplots(1, 2)

fig, axes
Raw data

X_raw = np.array([[2.0, 5001, [7.0, 510], [2.5, 50001])
labels = ['A', 'B', 'C']

Compute raw distances
d_AB_raw = np.linalg.norm(X_raw[@] - X_raw[1])

d_AC_raw = np.linalg.norm(X_raw[@] - X_raw[2])

Compute standardized distances
d_AB_std = np.linalg.norm(X_scaled[@] - X_scaled[1])

d_AC_std = np.linalg.norm(X_scaled[@] - X_scaled[2])

Left plot: Raw features

axes[0].scatter(X_rawl[:, 0], X rawl[:, 1], s=100)
for i, label in enumerate(labels):
P W e | PRI T S S B R | VY ;. .21 R T S A = c\ L | P I e e e L e e | BN
Raw Features Standardized Features
C 1.5 4 C
5000 A " --- d(AB) =11 " --- d(A,B) = 2.22
H -=- d(A,C) = 4500 | --- d(AC) =2.14
i i
1 l 1
4000 - ! 1.0 !
I — I
! 2 !
i : ; !
= 3000 1 - £ 0514 |
g ;' ! ; Rotman
- ; g ; Commerce
RSM338 | Kevin Mott

16 /45

Left plot: Raw features

axes[0].scatter(X_raw[:, 0], X _rawl[:, 1], s=100)
for i, label in enumerate(labels):
PG Y - W | PR B T B I | Y ime=m. .21 IR S SR A = -\ [R T [[P - - T, -k = 1\
Raw Features Standardized Features
C 1.5 1 C
5000 A ® --=- d(A,B) =11 @ -—- d(A,B) =2.22
H -=- d(A,C) = 4500 H --- d(AC) =2.14
i i
i] I
4000 A ! 1.0 !
I 8 I
:' P
—_ ©
o I = I
£ 3000 - H § 0.5 - ':
: ! : :
N ! - !
T i g i
20004 ! a 004 !
I)]
I o I
I I
] I
I I
I I
10004 | 054 1
I I
A r I A B
@-----mmmmemmcccnccccsccccssccae- L @®-------mmcec—mccccccccc=a- L
5 6 7 0.5 0.0 0.5 1.0 15
GDP Growth (standardized)

2 3 4
GDP Growth (%)

Left (raw): A and C appear far apart, A and B appear close—but this is misleading because GDP level dominates.
Right (standardized): Now d(A,B) > d(A,C) because A and B have very different growth rates (2% vs 7%), while Aand C

have similar growth (2% vs 2.5%).
otman
ommerce

Warning
Always standardize your features before clustering (unless you have a good reason not to). Most clustering algorithms assume features are on comparable scal
RSM338 | Kevin Mott

17 /45

Part lll: K-Means Clustering

Rotman
Commerce

RSM338 | Kevin Mott

18 /45

The K-Means Algorithm

K-Means is the most widely used clustering algorithm. The “K” refers to the number of clusters.

Input:

» Data: 1 objects, each with p features

» Number of clusters: K (you choose this)

Output:

» Cluster assignments: which cluster each object belongs to

» Cluster centers: the “average” location of each cluster

Goal: Assign each object to a cluster so that objects are close to their cluster center.

Rotman
Commerce

RSM338 | Kevin Mott

19/45

The K-Means Problem: Formal Statement

We have 1 objects with feature vectors X1, X2, ... , X, whereeachX; € RP.

Decision variables:

» Cluster assignments: C(i) € {1,2,...,K} foreach objecti

» Cluster centroids: U1, M2, ... , Mk where each ux € RP

Objective: Minimize the within-cluster sum of squares (WCSS):

K
min Ix; — pkl :
{CO} A} ; i:C%;k |

In words: choose assighments and centroids to minimize the total squared distance from each object to its assigned
centroid.

Rotman
Commerce

RSM338 | Kevin Mott

20/ 45

Understanding the Objective

K
Let’s unpack Z Z Ix; — pil 2.

k=1 i:C(i)=k

)
K
Outersum Y. | _; :loop overeachclusterk = 1,2, ... ,K

Inner sum . i:C(i)=k for cluster k, loop over all objects i assigned to that cluster

>
squared distance IX; — | %: how far is object i from centroid k?

Expanding the squared norm (using Week 1):

1%
Ixi — ik ® =) (xij — i)
j=1

This is the squared Euclidean distance between object i and centroid K. ggf,’,'},‘i';’,ce

RSM338 | Kevin Mott

21/45

K-Means: The Intuition

Imagine you want to place K “representative points” (called centroids) in your data space.

Each object gets assigned to whichever centroid is closest.

The algorithm finds centroid locations that minimize the total distance from each object to its assigned centroid.

from sklearn.cluster import KMeans

Generate data
np.random.seed(42)
X, _ = make_blobs(n_samples=150, centers=3, cluster_std=1.0)

Fit K-Means

kmeans = KMeans(n_clusters=3, random_state=42, n_init=10)
kmeans. fit(X)

labels = kmeans. labels_

centers = kmeans.cluster_centers_

fig, ax = plt.subplots()

ax.scatter(X[:, 0], X[:, 1], c=labels)

ax.scatter(centers[:, 0], centers[:, 1], c='red', marker='X', s=200, edgecolors='black')
ax.set_xlabel('Feature 1')

ax.set_ylabel('Feature 2')

_____ d Al N a1V AAm o e . 2l WM. [Y R V' Ay [P B R PRI S e [I 1

K-Means with K=3: Red X marks the centroids

. . i’y X X Rotman
o o oF
°® s Commerce

RSM338 | Kevin Mott

21/45

np.random.seed(42)
X, _ = make_blobs(n_samples=150, centers=3, cluster_std=1.0)

Fit K-Means

kmeans = KMeans(n_clusters=3, random_state=42, n_init=10)
kmeans. fit(X)

labels = kmeans. labels_

centers = kmeans.cluster_centers_

fig, ax = plt.subplots()

ax.scatter(X[:, 0], X[:, 1], c=labels)

ax.scatter(centers[:, 0], centers[:, 1], c='red', marker='X"', s=200, edgecolors='black')
ax.set_xlabel('Feature 1')

ax.set_ylabel('Feature 2')

..... de et Nl af 10 AAmmimn o el I/ M. Al W el s~ — = A e A A = T

K-Means with K=3: Red X marks the centroids

g XX
100 ¢ a*o o ®
(Y] S
7.5 - [N o» °
5.0 -
N 25 3
w
3
$ 00-
_2.5 .
~5.0 -
&
751 o

~10.0 75 5.0 25 0.0 2.5 5.0 Rotman
Feature 1
Commerce

RSM338 | Kevin Mott

22 /45

K-Means: The Algorithm

The algorithm alternates between two steps:

Step 1: Assign each object to the nearest centroid.

Step 2: Update each centroid to be the mean of all objects assighed to it.
Repeat until the assignments stop changing.

More precisely:
1. Initialize: Pick K random objects as initial centroids

2. Assign: For each object I, find the closest centroid and assign I to that cluster

3. Update: For each cluster k, compute the new centroid as the mean of all objects in cluster k

4. Repeat steps 2-3 until convergence (assignments don’t change)

Rotman
Commerce

RSM338 | Kevin Mott

— 23 /45

K-Means: Visualizing the Iterations

Generate synthetic data with 3 natural clusters
np.random.seed(42)
X, _ = make_blobs(n_samples=100, centers=3, cluster_std=1.2)

fig, axes = plt.subplots(2, 3)
axes = axes.flatten()

INITIALIZE: pick 3 random data points as starting centroids
np.random.seed(123)

centroid_idx = np.random.choice(len(X), 3, replace=False)
centroids = X[centroid_idx].copy()

for iteration in range(6):
ax = axes[iteration]

STEP 1 (Assign): compute distance from each point to each centroid,
then assign each point to its nearest centroid

| e L { A A { AN [N N o N | S I I N || S WY BRI =y T — o (] e~ oo~ EL N W
Iteration 1 Iteration 2 Iteration 3
% 8 8
L Y O S
® ® @
e __o " 4 () ® .0 4 o ® .0 C 4 o
"‘ro: "{08 1
® e ® o &3
oﬁ' o .Q‘ ©
®)

" " Rotman

Ilteration 4 Ilteration 5 Iteration 6 cOmmerce

RSM338 | Kevin Mott

23 /45

for iteration in range(6):
ax = axes[iteration]

STEP 1 (Assign): compute distance from each point to each centroid,
then assign each point to its nearest centroid

Al o e e e ke em —_— e e f f (s T o — [I | IR T D L T 1 PR AP . T T Y
Iteration 1 [teration 2 [teration 3
9 9

e o ° &3 o
°) = °
Iteration 4 Ilteration 5 Ilteration 6
8 8 b

) “'3!..3':'

) "‘5'.'..":"

w.

LN
Watch how the centroids move to the “center” of their assigned points, and assignments stabilize.

@ Note

This manual implementation is for illustration only—you won’t be asked to code K-means from scratch. But as with all algorithms in this course, you should unﬁbsti%j’a

intuitively what’s happening in the background, its strengths and weaknesses, and how to describe good use cases. COmmgrce

RSM338 | Kevin Mott

24 /45

Why the Algorithm Works

K
Recall the K-Means objective: min 2 E Ix; — pxll
(Cirimy & &,

The algorithm solves this by alternating between two sub-problems:

Fixing centroids, optimize assignments:

Given centroids {1, ... , MK, the best assignment for object i is the nearest centroid:

C(i) = arg mkin Ix; — pkl 2

Fixing assignments, optimize centroids:

Given assignments, the best centroid for cluster K is the mean of its members:

pe= Y %

i:C(i)=k

where 1y, is the number of objects in cluster k. Rotman
Commerce

RSM338 | Kevin Mott

25/ 45

K-Means in Python: Clustering Stocks by Characteristics

Let’s apply K-means to a finance problem: can we cluster stocks based on financial characteristics, and do the resulting
clusters correspond to something meaningful (like sector)?

We’ll deliberately pick an extreme example to illustrate the method clearly. We select 20 stocks from two very different

sectors:
Sector Stocks Typical Characteristics
Utilities NEE, DUK, SO, D, Low beta, high dividend yield (defensive, income-focused)
AEP, EXC, SRE,
XEL, PEG, WEC
Technology AAPL, MSFT, High beta, low dividend yield (growth-focused, volatile)
NVDA, GOOGL,
META, AVGO,
AMD, CRM, ADBE,
NOW
We use two features for clustering: Rotman

Commerce

RSM338 | Kevin Mott

25/ 45

» Beta: measures sensitivity to market movements (utilities tend to have low beta ~0.5, tech tends to have high beta
~1.2+)
» Dividend yield: percentage of stock price paid as dividends (utilities ~3-4%, tech ~0-1%)

Beta and dividend yield are pulled from Yahoo Finance via yfinance (data cached January 6, 2025).

Warning

This example is intentionally clean. We picked two sectors that are almost opposites in terms of risk and income characteristics. Real-world clustering problems are
messier—clusters may not align neatly with any known category, and interpreting what the clusters “mean” requires judgment.

Step 1: Pull and Cache the Data
We first pull the data from Yahoo Finance. To avoid hitting the API repeatedly, we cache the results to a CSV file.

import os

import pandas as pd
import yfinance as yf
from time import sleep

Tickers: 10 Utilities + 10 Tech
TICKERS = {
Utilities
"NEE": "Utilities", "DUK": "Utilities", "SO": "Utilities", "D": "Utilities", "AEP": "Utilities",
"EXC": "Utilities", "SRE": "Utilities", "XEL": "Utilities", "PEG": "Utilities", "WEC": "Utilities",
Tech Rotman
"AAPL": "Technology", "MSFT": "Technology", "NVDA"™: "Technology", "GOOGL": "Technology", "META": "Tech@Qosmarnerce

RSM338 | Kevin Mott

25/ 45

"AAPL": "Technology", "MSFT": "Technology", "NVDA"™: "Technology", "GOOGL": "Technology", "META": "Technology",
"AVGO": "Technology", "AMD": "Technology", "CRM": "Technology", "ADBE": "Technology", "NOW": "Technology",
by

DATA_FILE = "stock cluster_data.csv"

TR o WS P I | N =, ART I = P [[U P S P [S PRGN PR |

Loading cached data from stock_cluster_data.csv
Sample size: 20 stocks

ticker beta dividendYield sector
0 NEE 0.733 2.79 Utilities
1 DUK 0.490 3.65 Utilities
2 SO 0.447 3.41 Utilities
3 D 0.699 4.55 Utilities
4 AEP 0.615 3.33 Utilities
5 EXC 0.556 3.67 Utilities
6 SRE 0.746 2.95 Utilities
7 XEL 0.469 3.08 Utilities
8 PEG 0.613 3.18 Utilities
9 WEC 0.573 3.61 Utilities
10 AAPL 1.093 0.39 Technology

Step 2: Standardize and Cluster

Now we prepare the features, standardize them, and run K-means with K = 2 (since we expect two groups).

from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

Prepare features: beta and dividend yield ggmg,-ce
- : RSM338 | Kevin Mott

—]
A a H [] ar=

25/ 45

Prepare features: beta and dividend yield

X = stocks_df[["beta", "dividendYield"]].values
tickers = stocks_df["ticker"].values
true_sectors = stocks_df["sector"].values

Standardize features (always do this before clustering!)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

Fit K-Means with K=2 (we expect 2 groups: utilities vs tech)
kmeans = KMeans(n_clusters=2, random_state=42, n_init=10)
cluster_labels = kmeans.fit _predict(X_scaled)

print(f"Stocks in cluster @: {list(tickers[cluster_labels == 0])}")

T B R e L e e A P 3 — —5 m =T - = T~ [T T e [e e [P e . B AT I Y

Stocks in cluster ©: ['NEE', 'DUK', 'SO', 'D', 'AEP', 'EXC', 'SRE', 'XEL', 'PEG', 'WEC']
Stocks in cluster 1: ['AAPL', 'MSFT', 'NVDA', 'GOOGL', 'META', 'AVGO', 'AMD', 'CRM', 'ADBE', 'NOW']

Step 3: Compare Clusters to True Sectors

Did K-means discover the sector groupings on its own? Let’s compare.

Compare K-Means clusters to true sectors
fig, axes = plt.subplots(1, 2)

Left: K-Means clusters (what we found)
axes[0].scatter(stocks_df["beta"], stocks_df["dividendYield"], c=cluster_labels)
for i, ticker in enumerate(tickers):

axes [0] .annotate(ticker, (stocks_df["beta"].iloc[i], stocks_df["dividendYield"].iloc[i]), fontsize=7)
axes[0].set_xlabel("Beta") Rotman
axes [0].set_ylabel("Dividend Yield (%)") Commerce

RSM338 | Kevin Mott

25/ 45

AACTO LYl « DT L_ALAUT L\ DTLA)

axes[0].set_ylabel("Dividend Yield (%)")
axes[0].set_title("K-Means Clusters")

Right: True sectors
sector_colors = [0 1f s == "Utilities" else 1 for s in true_sectors]
axes[1l].scatter(stocks_df["beta"], stocks_df["dividendYield"], c=sector_colors)
for i, ticker in enumerate(tickers):
axes[1l].annotate(ticker, (stocks_df["beta"].iloc[i], stocks_df["dividendYield"].iloc[i]), fontsize=7)
axes[1].set_xlabel("Beta")

—ou—— LG LT — — A T P e B A | T W T P | e AV AR P | fo Y11\
K-Means Clusters True Sectors (Utilities vs Tech)
[3 ¢
4 4 -
(4 e @¢§i=c
@° @cP @° @c°
@EG @EG
‘EL ‘EL
~ 34 RE 3 3 RE
) SEE 8 SEE
=] o
[]
> =
2 2
g 2 7 g 2 .
> >
a a
1 1 A
MSFT AVGO MSFT AVGO
CRM CRM
AL META AL (META
0 NOW ADBE AMD NVDA 0 - NOW ADBE AMD NVOA
050 0.75 100 1.25 150 1.75 2.00 2.25 050 0.75 100 125 150 1.75 2.00 2.25
Beta Beta

K-means recovered the sector groupings almost perfectly—with no labels! Utilities cluster together (low beta, hi@ot man
dividend yield), and tech stocks cluster together (high beta, low dividend yield). Commerce

RSM338 | Kevin Mott

26 /45

K-Means: Important Caveats

1. K-Means finds a local minimum, not necessarily the global minimum.

Different random initializations can give different results. Run the algorithm multiple times and pick the best result.
(sklearn does this automatically with n_init.)

2. You must specify K in advance.

How do we know how many clusters there should be? (We’ll address this next.)
3. K-Means assumes roughly spherical clusters of similar size.

It doesn’t work well when clusters have very different shapes or sizes.

4. K-Means is sensitive to outliers.

A single extreme observation can pull a centroid far from where it “should” be.

Rotman
Commerce

RSM338 | Kevin Mott

27145

Part IV: Choosing K

Rotman
Commerce

RSM338 | Kevin Mott

28 /45

How Many Clusters?

K-Means requires you to specify K (the number of clusters) in advance.

The tradeoff:

» Too few clusters (K too small): Groups are too broad; we miss important distinctions

» Too many clusters (K too large): Groups are too specific; we’re fitting noise

Extreme cases:
» K = 1:Everythingin one cluster (useless)

» K = n:Eachobjectisits own cluster (also useless)

We want to find a K that captures meaningful structure without overfitting.

Rotman
Commerce

RSM338 | Kevin Mott

29 /45

The Within-Cluster Sum of Squares

Recall the K-Means objective:

K
Wk =) Y Ixi—pl?

k=1 i:C(i)=k

As we increase K, Wk always decreases:

» More clusters = smaller distance to the nearest centroid

» At the extreme, K = n gives Wx = 0 (each point is its own centroid)

So we can’t just minimize Wx . We need to balance fit against complexity.

Rotman
Commerce

RSM338 | Kevin Mott

30/45

The Elbow Method

Plot Wx against K and look for an “elbow”—a point where the improvement suddenly slows down.

Compute WCSS for different values of K
np.random.seed(42)
X, _ = make_blobs(n_samples=200, centers=4, cluster_std=1.0)

wcss = []
K_range = range(1, 11)

for k in K_range:
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
kmeans. fit(X)
wcss.append(kmeans.inertia_) # inertia_ is sklearn's name for WCSS

fig, ax = plt.subplots()

ax.plot(K_range, wcss, 'bo-"')

ax.set_xlabel('Number of clusters (K)"')
ax.set_ylabel('Within-cluster sum of squares (W_K)')
ax.set_title('Elbow Method: Look for the "bend"')

R W | BV W e PR [P IRy | | - EaN S IS | 1 P O, I N e B PO S A B B

Elbow Method: Look for the "bend"

-=—=- Elbow at K=4

12000 +

10000 A

Rotman
Commerce

of squares (Wk)

8000 -

RSM338 | Kevin Mott

30/45

wcss = []
K_range = range(1, 11)

for k i1n K_range:
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
kmeans. fit(X)
wcss.append(kmeans.inertia_) # inertia_ is sklearn's name for WCSS

fig, ax = plt.subplots()

ax.plot(K_range, wcss, 'bo-"')

ax.set_xlabel('Number of clusters (K)"')
ax.set_ylabel('Within-cluster sum of squares (W_K)')
ax. set _title('Elbow Method: Look for the "bend"')

. - el 2 f .. A P RS R i | i - S I | 1 T ebe a7 I F T ams s e 7 ALND

Elbow Method: Look for the "bend"

- == Elbow at K=4

12000 A

10000 -

8000 -

6000 A

4000 +

Within-cluster sum of squares (Wk)

2000 A

o e . ° —o
2 4 6 8 10
Number of clusters (K) ggf::::gr ce

RSM338 | Kevin Mott

31/45

Reading the Elbow Plot

The plot shows how much we gain by adding each additional cluster.

» Before the elbow: Adding clusters substantially reduces Wk

» After the elbow: Adding clusters provides diminishing returns

In the previous plot, K = 4 is the elbow—going from 3 to 4 clusters helps a lot, but going from 4 to 5 doesn’t help much.

@ Note

The elbow is sometimes subtle or ambiguous. Use it as a guide, not a rigid rule. Domain knowledge matters—if you know there “should” be 5 customer segments based
on business logic, that’s a good reason touse K = 3.

Rotman
Commerce

RSM338 | Kevin Mott

32/45

The Silhouette Score

An alternative metric that measures how well-separated the clusters are.

For each object i:

» a(i) = average distance to other objects in the same cluster

» b(i) = average distance to objects in the nearest other cluster

The silhouette score for object i:

b(i) — a(i)

W = ax(@@). b))

» S(I) close to 1: object is well-matched to its cluster

» S(I) close to 0: object is on the boundary between clusters

» S(i) negative: object might be in the wrong cluster

The overall silhouette score is the average across all objects.
Rotman

Commerce

RSM338 | Kevin Mott

33/45

Silhouette Score in Python

from sklearn.metrics import silhouette_score

Compute silhouette score for different K
silhouette_scores = []
K_range = range(2, 11) # silhouette requires K >= 2

for k in K_range:
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
labels = kmeans.fit_predict(X)
score = silhouette_score(X, labels)
silhouette_scores.append(score)

fig, ax = plt.subplots()

ax.plot(K_range, silhouette_scores, 'go-')
ax.set_xlabel('Number of clusters (K)')
ax.set_ylabel('Silhouette Score')
ax.set_title('Higher is better"')

R L B (A S /) P RPN I I | i -SSR S P | 1 p P PO, I I o W T S VA B B

Higher is better

0.8 1 ——- BestatK=4

0.7 -

o
(o))
]

Rotman
Commerce

Silhouette Score

RSM338 | Kevin Mott

33/45

for k in K_range:
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
labels = kmeans.fit_predict(X)
score = silhouette_score(X, labels)
silhouette_scores.append(score)

fig, ax = plt.subplots()

ax.plot(K_range, silhouette_scores, 'go-')
ax.set_xlabel('Number of clusters (K)')
ax.set_ylabel('Silhouette Score')
ax.set_title('Higher is better"')

R L B (A S/} PP RPN R I | i -SSR S B | 1 p P PO, I [o W T S VA B B

Higher is better

0.8 1 —==- BestatK=4

0.7 1

©
(o))
]

Silhouette Score

o
(9]
1

0.4

P - -

5 6 7 8 9 10
Number of clusters (K)

: : T : : otman
Higher silhouette score indicates better-defined clusters. Here, K = 4 has the highest score. gomme,-ce

RSM338 | Kevin Mott

34 /45

Part V: Hierarchical Clustering

Rotman
Commerce

RSM338 | Kevin Mott

35/45

The Problem with K-Means: You Must Choose K

K-Means requires you to specify the number of clusters K before you start. But what if you don’t know how many
clusters there should be?

Hierarchical clustering takes a different approach: instead of committing to a specific K, it builds a complete hierarchy
showing how objects group together at every level of similarity.

Think of it like a family tree for your data:

» At the bottom, each object is its own “family” (most granular)
» As you move up, similar objects merge into larger families

» Atthe top, everyoneisin one big family (least granular)

You can then “cut” this tree at any height to get as many or as few clusters as you want—after seeing the structure.

Rotman
Commerce

RSM338 | Kevin Mott

36 /45

The Agglomerative Algorithm: Step by Step

Agglomerative means “bottom-up”—we start with individual objects and progressively merge them.

The algorithm:

1. Start: Each of the 1 objects is its own cluster. (We have 7 clusters.)

2. Find closest pair: Compute the distance between every pair of clusters. Find the two clusters that are closest.

3. Merge: Combine those two clusters into one. (Now we have n — 1 clusters.)

4. Repeat: Go back to step 2. Keep merging until everything is in one cluster.

We record each merge as we go. After 1 — 1 merges, we have a complete record of how the clusters formed.

Rotman
Commerce

RSM338 | Kevin Mott

A Tiny Example: 5 Objects

Suppose we have 5 objects (A, B, C, D, E) and we’ve computed all pairwise distances:

D

B 2 0 5 9 8
C 6 5 0 2 5
D 10 9 4 0 3
E 9 8 5 3 0

Step 1: Find the smallest distance. It’s d(A, B) = 2. Merge A and B into cluster {A,B}.

Step 2: Now find the smallest distance among the remaining clusters: {A,B}, C, D, E. The smallestis d(D, E) = 3. Merge
D and E into cluster {D,E}.

Step 3: Now we have {A,B}, C, {D,E}. Suppose the smallest distance is between C and {D,E}. Merge into {C,D,E}. Rotman

Ann A Ein - mMaoaroo 1A K »1a¥la [) NTN NNA a

RSM338 | Kevin Mott

37 /45

) Commerce

38 /45

But Wait: How Do We Measure Distance Between Clusters?

In step 1, measuring distance between single objects is easy—just use Euclidean distance.

But after we merge A and B, how do we measure the distance from {A,B} to C? There are several options:

Single linkage (minimum): Distance between clusters = distance between their closest members.
d({A,B},C) = min(d(4,C),d(B, C))

Complete linkage (maximum): Distance between clusters = distance between their farthest members.
d({A,B},C) = max(d(A, C),d(B, C))

Average linkage: Distance = average of all pairwise distances between members.

Ward’s method: Choose the merge that minimizes the increase in total within-cluster variance. (Similar spirit to K-
Means.)

Rotman
Commerce

RSM338 | Kevin Mott

39/45

Linkage Choice Matters

Different linkage methods can give very different results:

Behavior

Single Finds the closest points between Detecting elongated or irregular
clusters. Can create long, “chained” shapes
clusters.

Complete Finds the farthest points. Creates When you want tight, well-separated
compact, spherical clusters. groups

Average Compromise between single and General purpose
complete.

Ward Minimizes variance (like K-Means). Most similar to K-Means results
Creates compact, equal-sized
clusters.

Ward’s method is often a good default—it tends to create clusters similar to what K-Means would find. Rotman
Commerce

RSM338 | Kevin Mott

40/ 45

The Dendrogram: Visualizing the Hierarchy

The dendrogram is a tree diagram that shows the entire merge history.
Let’s build one for our stock data:

from scipy.cluster.hierarchy import dendrogram, linkage

Use our stock data (already loaded)
X_stocks = stocks_df[["beta", "dividendYield"]].values
stock_tickers = stocks_df["ticker"].values

Standardize (important!)
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_stocks_scaled = scaler.fit_transform(X_stocks)

Perform hierarchical clustering with Ward's method
Z = linkage(X_stocks_scaled, method='ward')

Plot the dendrogram
fig, ax = plt.subplots()
dendrogram(Z, labels=stock_tickers, ax=ax, leaf_rotation=90)

..... R, P S B AN I ol Ry P B

Dendrogram of 20 Stocks

8_

7 .
Rotman
Commerce

5
RSM338 | Kevin Mott

6

40/ 45

stock_tickers = stocks_df["ticker"].values

Standardize (important!)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_stocks_scaled = scaler.fit_transform(X_stocks)

Perform hierarchical clustering with Ward's method
Z = linkage(X_stocks_scaled, method='ward"')

Plot the dendrogram
fig, ax = plt.subplots()
dendrogram(Z, labels=stock_tickers, ax=ax, leaf_rotation=90)

..... U, P R Y A Y o SpEu DR B Y
Dendrogram of 20 Stocks
8_
7_.
6-
=
2
S 4 -
-
LY
@
A 3-
2_.
14 |
. |
0 | = [1 —— 1 |
L TN v/ — [l =) L — 1
° L g g2 o 3 8 g u 8 35 2 £ @ 2 5 E g2 3
z uw W =z A = >z < 9 g z O =z 2 2 8
Stock © ROt"'an
Commerce

RSM338 | Kevin Mott

41/ 45

How to Read a Dendrogram

Reading from bottom to top:

» Leaves (bottom): Each leaf is one object (one stock in our case)

» Vertical lines: Show when objects/clusters merge

» Height of merge: The y-axis value where two branches join tells you how dissimilar they were when merged
» Lower merge = more similar: Objects that merge near the bottom are very similar

» Higher merge = less similar: The final merges at the top join quite different groups

In our stock dendrogram:

» Utilities (high dividend, low beta) should cluster together on one side
» Tech stocks (low dividend, high beta) should cluster on the other side
» The two groups merge only at the very top (they’re quite different)

Rotman
Commerce

RSM338 | Kevin Mott

42 /45

Cutting the Dendrogram to Get Clusters

To get a specific number of clusters, draw a horizontal line across the dendrogram. The number of vertical lines it
crosses = number of clusters.

Q How to choose where to cut

Look for large vertical gaps in the dendrogram—places where the branches are tall before the next merge. A large gap means those clusters were quite dissimilar when
they merged, suggesting they might be better left as separate groups.

In our stock dendrogram, there’s a big gap between the utilities cluster and the tech cluster before they finally merge at
the top. That gap tells us “these two groups are very different”—a natural place to cut.

from scipy.cluster.hierarchy import fcluster
fig, axes = plt.subplots(1l, 2)

Left: Dendrogram with cut line

dendrogram(Z, labels=stock_tickers, ax=axes[0], leaf_rotation=90)
axes[0] .axhline(y=4, color='red', linestyle='—-', linewidth=2)
axes[0].set xlabel('Stock')

axes [0].set_ylabel('Distance (Ward)"')

axes[0].set_title('Cut at height=4 - 2 clusters"')

Right: The resulting clusters

cluster_labels_hc = fcluster(Z, t=2, criterion='maxclust') # Cut to get 2 clusters

axes[1l].scatter(stocks_df["beta"], stocks_df["dividendYield"], c=cluster_1labels_hc) Rotman
for i, ticker in enumerate(stock_tickers): Commerce

RSM338 | Kevin Mott

42 /45

M/AAM L LW] B T b A WU W W) - L eI

axes [0].set_ylabel('Distance (Ward)"')
axes[0].set_title('Cut at height=4 - 2 clusters')

Right: The resulting clusters
cluster_labels_hc = fcluster(Z, t=2, criterion='maxclust') # Cut to get 2 clusters
axes[1].scatter(stocks_df["beta"], stocks_df["dividendYield"], c=cluster_labels_hc)
for i, ticker in enumerate(stock _tickers):

axes[1l].annotate(ticker, (stocks_df["beta"].iloc[i]l, stocks_df["dividendYield"].iloc[i]), fontsize=7)
axes[1l].set_xlabel("Beta")

PR . B | —— AL P (R P Y AN 1 N . WL L (R | A _ T I N1

Cut at height=4 - 2 clusters Hierarchical Clusters (K=2)
8 @
7 4 1
P§iEc
1 ¢° P
° —_ ‘EL ng
5 £ 39 [
S O 5 EE
= 9
>
i e R :
M Q 2
o T
O 34 S
2 1 1
MSFT AVgF?M
1 BARL. META
—— [— 0 - NOW ADBE AMD NVA
0 — r 1 1 1 1 I L) Ll 1
ALWwQOUN¥YO-aA o<W0 (R 050 075 1.00 125 150 1.75 2.00 2.25
%%5§88§g§§zgmw§§h§8 Beta
> < < = <>1: Oz=Zzs o
Q

The dendrogram lets you see the structure before committing to a number of clusters. You can experiment with qj'fcf’e[’e’;lgn

cuts to see what makes sense. Commerce

RSM338 | Kevin Mott

43 /45

Hierarchical vs K-Means: When to Use Which?

Aspect K-Means Hierarchical
Must specify K? Yes, before running No—choose after seeing the dendrogram
Output Just cluster labels Full tree structure showing relationships
Speed Fast (scales to large n) Slower (must compute all pairwise distances)
Deterministic? No (random initialization) Yes (same data > same tree)
Cluster shapes Assumes spherical More flexible (depends on linkage)

Rules of thumb:

» Use K-Means when you have a large dataset and a rough idea of K

» Use hierarchical when you want to explore the cluster structure, or when 1 is small enough that speed isn’t a concern

(say,n < 1000)

» Use both as a sanity check—if they give very different answers, investigate why Rotman
Commerce

RSM338 | Kevin Mott

44/ 45

Summary

Clustering groups objects by similarity without labels (unsupervised learning).

Distance measures how similar two objects are. Euclidean distance is most common. Standardize features before
clustering!

K-Means iteratively assigns objects to centroids and updates centroid locations. Fast and simple, but requires specifying

K.

Choosing K: Use the elbow method or silhouette score. Domain knowledge also matters.

Hierarchical clustering builds a tree of merges. The dendrogram lets you choose K after the fact.

Next week: We move to supervised learning—regression methods that predict outcomes from features.

Rotman
Commerce

RSM338 | Kevin Mott

45/ 45

References

» Hull, J. (2024). Machine Learning in Business: An Introduction to the World of Data Science (3rd ed.). Chapter 2.

» scikit-learn documentation: Clustering

» Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129-137. (Original
K-Means paper)

Rotman
Commerce

RSM338 | Kevin Mott

