1/41

RSM338: Applications of Machine Learning in Finance
Week 3: Introduction to Machine Learning | January 21-22, 2026

Kevin Mott

Rotman School of Management

Rotman
Commerce

RSM338 | Kevin Mott

2141

Today’s Roadmap

Last week, we studied the statistical properties of financial returns—how they’re distributed, why the normality
assumption fails, and why prediction is hard. Today we step back to understand the broader framework: Machine

Learning.

1. What is Machine Learning? Learning patterns from data

2. Types of Learning: Supervised, unsupervised, and reinforcement learning
3. The ML Formalism: Loss functions, parameters, and learning algorithms
4. Python for ML: The tools you’ll use and how to read code

5. Limitations: When ML fails and why

Rotman
Commerce

RSM338 | Kevin Mott

3/41

Part I: What is Machine Learning?

Rotman
Commerce

RSM338 | Kevin Mott

4/ 41

The Traditional Programming Approach

Traditional programming: You write explicit rules for the computer to follow.
Example: Building a spam filter the traditional way:

IF email contains "Nigerian prince" THEN spam

IF email contains "free money" THEN spam

IF sender is in contacts THEN not spam

IF email contains "urgent wire transfer" THEN spam

Problems with this approach:

» You must anticipate every possible pattern
» Rules become unwieldy as edge cases accumulate
» The world changes—new spam tactics appear constantly

» Some patterns are too complex for humans to articulate

Question: How would you write rules to recognize a cat in a photo? Or predict tomorrow’s stock return?

Rotman
Commerce

RSM338 | Kevin Mott

5/41

The Machine Learning Approach

Machine learning: Instead of writing rules, you show the computer examples and let it learn the patterns.

The same spam filter, ML approach:

1. Collect thousands of emails labeled “spam” or “not spam”
2. Feed them to an ML algorithm
3. The algorithm learns which patterns distinguish spam from legitimate email

4. Apply the learned patterns to new emails

For many problems, it’s easier to collect examples than to write rules.

Machine Learning = building models that learn patterns directly from data, rather than being explicitly programmed.

Rotman
Commerce

RSM338 | Kevin Mott

6/41

Traditional Programming vs. Machine Learning

Traditional Programming Machine Learning

Data Data
N

\ |
: Computer Output > Computer '
-/L | | J Output | ‘ J

(labels)

Traditional programming: Human writes rules, computer applies them to data.

Machine learning: Human provides data and desired outputs, computer learns the rules.

Rotman
Commerce

RSM338 | Kevin Mott

77141

Why Use Machine Learning?

Use ML when:

1. Rules are too complex to articulate: Recognizing faces, understanding speech, reading handwriting
2. Rules change over time: Fraud patterns evolve, market regimes shift
3. Rules differ across contexts: What predicts returns varies by asset class, time period, market conditions

4. You have lots of labeled examples: The data itself can reveal the patterns

Finance examples where ML excels:

» Credit scoring: Which borrowers will default? (millions of loan records)
» Fraud detection: Which transactions are fraudulent? (labeled fraud cases)
» Return prediction: Which stocks will outperform? (historical returns + features)

» Portfolio construction: How to group similar assets? (return patterns)

Rotman
Commerce

RSM338 | Kevin Mott

8/41

Connection to What We’ve Done

Week 2 set up the problem ML tries to solve:

» We have historical data (S&P 500 returns)

» We want to estimate parameters ((, 0') and make forecasts (expected wealth)
» Estimation is uncertain—more data helps, but we’re never perfectly sure

» Most predictors fail out-of-sample (Goyal-Welch)

Machine learning is a systematic framework for:

» Choosing what to estimate (model selection)
» Measuring how wrong we are (loss functions)
» Finding the best estimates (learning algorithms)

» Testing whether our estimates generalize (out-of-sample evaluation)

Rotman
Commerce

RSM338 | Kevin Mott

9/41

Part ll: Types of Learning

Rotman
Commerce

RSM338 | Kevin Mott

Three Types of Machine Learning

10/ 41

1. Supervised Learning

» You have labeled data: input-output pairs (X;, };)

» Goal: Learn a function f suchthat f(x) = y

» Examples: spam detection, return prediction, credit scoring

2. Unsupervised Learning

» You have only inputs X; —no labels

» Goal: Discover structure or patterns in the data

» Examples: clustering stocks, dimensionality reduction, anomaly detection

3. Reinforcement Learning

» An agent learns by interacting with an environment
» Goal: Maximize cumulative reward through trial and error

» Examples: game playing, robotic control, trading strategies

a - a - ala ala a¥a ala a a¥la a¥la \YFa AlaVa -

RSM338 | Kevin Mott

Rotman
Commerce

11/ 41

Building Your ML Toolbox

Think of ML methods as tools in a toolbox.

Just as an experienced contractor knows which tool is right for each repair—hammer for nails, wrench for bolts, saw for
cutting—you’ll learn which ML method is right for each problem.

The tools we’ll cover:

What it does When to use it

Linear Predict a number from features Simple relationships, interpretability matters

regression

Regularized Prevent overfitting Many features, small samples

regression

Logistic Predict probabilities/classes Binary outcomes (default/no default)

regression

Decision Capture nonlinear patterns Complex interactions between features

trees
Rotman
Commerce

RSM338 | Kevin Mott

11/ 41

EEw WwWaE E"H Imm EEEYS Wil i i Wi W % W EEI B - W G WSWe

Just as an experienced contractor knows which tool is right for each repair—hammer for nails, wrench for bolts, saw for
cutting—you’ll learn which ML method is right for each problem.

The tools we’ll cover:

What it does When to use it
Linear Predict a number from features Simple relationships, interpretability matters
regression
Regularized Prevent overfitting Many features, small samples
regression
Logistic Predict probabilities/classes Binary outcomes (default/no default)
regression
Decision Capture nonlinear patterns Complex interactions between features
trees
Clustering Group similar observations No labels, want to find structure

: P : : : : otman
The goal of this course: Build your intuition so you recognize which tool fits which problem—and understand W/gommerce

RSM338 | Kevin Mott

12/ 41

Supervised Learning: The Setup

The prediction problem:

Given input features X (what we observe), predict an output ¥ (what we want to know).

Notation:

» X; = (Xi1, X2, ..., xip)’ — a p-dimensional feature vector for observation i

» Y; — the target or label for observation I

» O = {(X1,y1),(X2,¥2),... ,(XN , YN)} — the training set of N labeled examples

The goal: Learn a function [: RP — O such that f(X) = .

Two main types of supervised learning:

Type Target y Example
Regression Continuous (real-valued) Predict stock return, house price
Classification Categorical (discrete) Predict spam/not spam,
Rotman
buy/sell/hold Commerce

RSM338 | Kevin Mott

Regression vs. Classification

13/ 41

Target y (e.g., future return %)

Regression: The target J is a continuous number. We want to minimize how far off our predictions are.

Classification: The target y is a category (class). We want to predict the correct class as often as possible.

o
1

~J
1

(@)
]

o
1

=N
1

w
1

N
1

Regression: Predict a Number

- |earned function ®

Feature x (e.qg., P/E ratio)

Feature 2 (e.g., momentum)

Classification: Predict a Category

Feature 1 (e.g., earnings surprise)

== Decision boundary ¢
\\\ ® ™)
S []
\\ O
~
\\\ e . ® .. o o)
~ []
o 0O %, & o“
‘o B RS & &
o & oo B @ o
@) \'\. ®
°o® &
. o. ®0 0\:.\0 °
°® B o N
e © o o
° ~
) -1 0 -

Rotman
Commerce

RSM338 | Kevin Mott

14/ 41

Regression: Starting with Linear

Linear regression assumes the relationship between features and target is linear:

y=ﬁo +ﬁ1X1 +52x2 + - +ﬁpxp+s
In matrix form, for N observations:
y=Xp+¢

wherey € RN, X € RVN*(P+D and g e RPHL,

The OLS solution: ﬁA= X' X)Xy

This is the “learning algorithm” for linear regression—it finds the 8 that minimizes squared error.

Rotman
Commerce

RSM338 | Kevin Mott

15/ 41

Beyond Linearity: ML as Function Approximation

The ML perspective: We're trying to approximate some unknown function f:

y=f(X) +e¢

This function f could be linear: f (X) = XJf. But it might not be.

We don’t know what [is. That’s what “learning” means—finding a good approximation f from data, whether that
turns out to be linear or not.

Different ML methods = different assumptions about f :

Method Assumption about
Linear regression f islinear

Polynomial regression f is a polynomial
Decision trees f is piecewise constant

Rotman
Commerce

RSM338 | Kevin Mott

15/ 41

J/—J\A}TC-

This function f could be linear: f (x) = XJf. But it might not be.

We don’t know what [is. That’s what “learning” means—finding a good approximation f from data, whether that
turns out to be linear or not.

Different ML methods = different assumptions about f :

Method Assumption about [

Linear regression f islinear

Polynomial regression f is a polynomial

Decision trees f is piecewise constant

Deep neural networks f is a composition of simple nonlinear functions: which can approximate any

continuous function!

The tradeoff: More flexible models can fit complex patterns, but risk overfitting (fitting noise instead of signal) a%io ave

growing computational costs. Commerce

RSM338 | Kevin Mott

16/ 41

Finance Examples: Classification

Credit scoring:

» Features X: Income, debt, credit history, employment, ...

» Target y: Default or No Default (binary classification)

Fraud detection:

» Features X: Transaction amount, time, location, merchant type, ...
» Target y: Fraudulent or Legitimate (binary)

Trading signals:

» Features X: Technical indicators, fundamentals, sentiment, ...

» Target y: Buy, Hold, or Sell (multi-class classification)

Ordinal classification (a hybrid):

» Target y: Credit rating (AAA, AA, A, BBB, ...) — categories with natural ordering Rotman

Commerce

ication
RSM338 | Kevin Mott

17 /41

Unsupervised Learning: The Setup

The structure-discovery problem:
Given only input features X—no labels—find interesting patterns or structure.

Notation:

» Data: {X1,X2,...,XN } —justfeatures, no labels

Key difference from supervised learning:

» Supervised: We ask “given features X, what is y?” — we model P (Y | X)

» Unsupervised: We ask “what does the data look like?” — we model P (X)

In supervised learning, there’s a target variable y we’re trying to predict. In unsupervised learning, there’s no y—we’re

just trying to understand the structure of X itself. Which observations are similar? Are there natural groupings? What are
the main patterns?

Main unsupervised tasks:

Task Goal

Example

2rce
RSM338 | Kevin Mott

17 /41

» Supervised: We ask “given features X, what is y?” — we model P (Y | X)

» Unsupervised: We ask “what does the data look like?” — we model P (X)

In supervised learning, there’s a target variable y we’re trying to predict. In unsupervised learning, there’s no y—we’re

just trying to understand the structure of X itself. Which observations are similar? Are there natural groupings? What are
the main patterns?

Main unsupervised tasks:

Task Goal Example
Clustering Group similar observations Group stocks by return patterns
Dimensionality reduction Find low-dimensional Reduce 100 features to 5 factors

representation

Density estimation Estimate the data Model the joint distribution of returns
distribution
Anomaly detection Find unusual observations Detect outlier transactions e
Commerce

RSM338 | Kevin Mott

18 /41

Finance Examples: Unsupervised Learning

Clustering stocks:

» Group stocks that move together

» Identify “sectors” from return data (without using industry labels)

» Construct diversified portfolios by sampling from different clusters

Factor models / PCA:

» Find the dominant factors driving returns
» Reduce dimensionality from thousands of stocks to a few factors

» Recall from RSM332: Factor models decompose returns into systematic and idiosyncratic components

Anomaly detection:

» Identify unusual trading patterns
» Detect market manipulation

» Flag outlier returns for further investigation

: : o - Rotman
We’ll study clustering (K-means) in detail in Week 4. Commerce

RSM338 | Kevin Mott

19/ 41

Reinforcement Learning: Brief Introduction

The sequential decision problem:

An agent interacts with an environment over time, receiving rewards or penalties for its actions.
The setup:

» State S;: Current situation (e.g., current portfolio, market conditions)

» Action Q;: What the agent does (e.g., buy, sell, hold)

» Reward r;: Feedback from the environment (e.g., profit/loss)

» Goal: Learn a policy 77(S) — a that maximizes cumulative reward

Finance applications:

» Optimal execution (minimize market impact when trading large orders)
» Portfolio management (dynamic asset allocation)
» Market making (set bid-ask spreads)

Why it’s different:
Rotman

» Actions affect future states (your trade moves the price) Commerce

19/ 41

The setup:

» State S;: Current situation (e.g., current portfolio, market conditions)
» Action Q;: What the agent does (e.g., buy, sell, hold)
» Reward r;: Feedback from the environment (e.g., profit/loss)

» Goal: Learn a policy 77(S) — a that maximizes cumulative reward

Finance applications:

» Optimal execution (minimize market impact when trading large orders)
» Portfolio management (dynamic asset allocation)

» Market making (set bid-ask spreads)

Why it’s different:

» Actions affect future states (your trade moves the price)
» Delayed rewards (today’s trade affects tomorrow’s opportunities)
» Exploration vs. exploitation (try new strategies vs. stick with what works)

. . . . et se g Rotman
We won’t cover RL in depth, but it’s an active research area in quantitative finance. Commerce

RSM338 | Kevin Mott

20/ 41

Part Ill: The ML Formalism

Rotman
Commerce

RSM338 | Kevin Mott

21/ 41

The Three Ingredients of Machine Learning

Every ML algorithm has three components:

1. Amodel: What functions f are we considering?

2. A loss function: How do we measure prediction error?

3. A learning algorithm: How do we find the best f ?

Example: Linear regression
1. Model: f(X) = fo + f1X1 + - + BpXp (linear functions)
2. Loss: Squared error L(y, y) = (y — y)?

3. Algorithm: Ordinary least squares: B = (X’X)' X'y

The ML framework gives us a systematic way to think about prediction problems.

Rotman
Commerce

RSM338 | Kevin Mott

22/ 41

Ingredient 1: The Model

The model is the function f (X) we’re trying to learn.

We have to decide what form [takes. This is a choice we make:

Model type Parameters to learn
Linear regression fX)=po+Pix1 + - + Bpxp p
Polynomial f(x)=B +Pix+Box? + - Coefficients
Decision tree Piecewise constant regions Split points, leaf values
Neural network Compositions of nonlinear Weights and biases
functions
The tradeoft:

» Too simple a model: Can’t capture the true relationship (underfitting)

» Too complex a model: Fits noise in the training data (overfitting) Rotman
Commerce

RSM338 | Kevin Mott

22/ 41

Ineé modelis the Tunction J (X) we‘re trying to learn.

We have to decide what form [takes. This is a choice we make:

Model type Parameters to learn
Linear regression fX)=pHo+Pix1 + - + Bpxp p
Polynomial f(x) =B+ pix+Box? + - Coefficients
Decision tree Piecewise constant regions Split points, leaf values
Neural network Compositions of nonlinear Weights and biases
functions
The tradeoff:

» Too simple a model: Can’t capture the true relationship (underfitting)

» Too complex a model: Fits noise in the training data (overfitting)

Learning = finding the parameters. Once we choose a model form (e.g., linear), the learning algorithm finds the specific

. : Rotman
parameter values (e.g.,) that best fit the data. Commerce

RSM338 | Kevin Mott

23/ 41

Ingredient 2: The Loss Function

The loss function measures how bad a prediction is.

Notation:

» L(y,y) =loss when true value is y and predictionis y"

» Lower loss = better prediction

Common loss functions for regression:

Name Formula Properties
Squared error L(y,y) = (y — y)? Penalizes large errors heavily
Absolute error Ly,y)=|y-yl More robust to outliers

Common loss functions for classification:

Name Formula Properties

Commerce

RSM338 | Kevin Mott

23/ 41

» L(y, V) =loss when true value is y and predictionis y"

» Lower loss = better prediction

Common loss functions for regression:

Name Formula Properties
Squared error L(y,y) = (y — y)? Penalizes large errors heavily
Absolute error Ly,y)=|y-yl More robust to outliers

Common loss functions for classification:

Name Formula Properties
0-1 loss L(y,y) =1y #y] 1if wrong, 0 if correct
Cross-entropy L(y,p) =-ylogp—-(1-y)log(l - p) For probabilistic predictions
The loss function defines what “good prediction” means. ggf,’,",,‘i';’,ce

RSM338 | Kevin Mott

24 / 41

Average Loss: The Objective Function

We want to minimize average loss across the training data.

Empirical risk (training error):

1 N
D(G) — ﬁ ZL(yiafG(Xi))
i=1

For squared error loss:

1 N
0(0) =) 0 — fo(x1))* = MSE
i=1

The learning problem becomes an optimization problem:

0" = arg mgn 1(0)

Find the parameters O that minimize average loss on the training data. Rotman

Commerce

RSM338 | Kevin Mott

25/ 41

Ingredient 3: The Learning Algorithm

The learning algorithm finds the optimal parameters 0" .

For some problems, there’s a closed-form solution:

Linear regression with squared error:
* / -1 w7/
pr=XX)" Xy

This is the OLS formula from your statistics courses.
For most problems, we use iterative optimization:

Gradient descent: Move parameters in the direction that reduces loss.

e+l — g _ nv GD(Q(t))
where:

» VgLl isthe gradient (vector of partial derivatives)

» 7 > (is the learning rate (step size)

: : Rotman
» We iterate until convergence Commerce

RSM338 | Kevin Mott

25/ 41

The learning algorithm finds the optimal parameters 0™ .

For some problems, there’s a closed-form solution:

Linear regression with squared error:
* / —1 w7
pr=XX)" Xy

This is the OLS formula from your statistics courses.
For most problems, we use iterative optimization:

Gradient descent: Move parameters in the direction that reduces loss.

et — gl) _ nv 9|:|(9(t))
where:

» VgLlis the gradient (vector of partial derivatives)

» 7 > 0 is the learning rate (step size)

» We iterate until convergence

. .)) Rotman
Gradient descent is the workhorse of modern ML—it’s how neural networks are trained. Commerce

RSM338 | Kevin Mott

26 / 41

Why Derivatives? The Intuition

We want to minimize error. From calculus, you know that minima occur where the derivative equals zero:

d]

D — *
10 0 o

Problem: For complex models, we can’t solve this equation analytically.

Solution: Use the derivative to guide us toward the minimum.

The gradient VL points in the direction of steepest increase. So the negative gradient points toward steepest
decrease.

-V oLl

direction of steepest decrease

Gradient descent: Take small steps in the direction of steepest decrease until we reach a point where VL = 0 (a
minimum).

This is like walking downhill in fog—you can’t see the bottom, but you can feel which direction is steepest and step that

way. Rotman

Commerce

RSM338 | Kevin Mott

27 1 41

Visualizing Gradient Descent

—

L= e DL i i [+

o0Once e Loop o Reflect

Gradient descent iteratively moves “downhill” on the loss surface until it reaches a minimum.

Rotman
Commerce

RSM338 | Kevin Mott

28 / 41

Putting It Together: The ML Recipe

Step 1: Choose a model

» What form should [take?

» Linear? Polynomial? Tree? Neural network?
Step 2: Choose a loss function

» How do we measure prediction quality?

» Squared error? Absolute error? Classification accuracy?

Step 3: Fit the model (run the learning algorithm)

» Find parameters 8* that minimize training loss

» Use closed-form solution or gradient descent

Step 4: Evaluate on new data

» Training error is optimistic (overfitting risk)

» Test on held-out data (out-of-sample evaluation)—as we discussed in Week 2! Rotman
Commerce

RSM338 | Kevin Mott

29/ 41

Part IV: Python for Machine Learning

Rotman
Commerce

RSM338 | Kevin Mott

30/ 41

The Python ML Ecosystem

You don’t need to be a programmer to use ML. Most of the hard work is already done—you just need to know which tools
to use.

The main packages:

What it does You’ll useit to...
numpy Fast math on arrays Store data, do matrix operations
pandas Data tables (like Excel) Load CSVfiles, clean data, compute returns
matplotlib Plotting Visualize results
scikit-learn ML algorithms Fit models, make predictions, evaluate

All of these are pre-installed in most Python environments (Anaconda, Google Colab, etc.).

Rotman
Commerce

RSM338 | Kevin Mott

31/ 41

The Typical ML Workflow

The algorithms behind ML are genuinely complex—gradient descent, matrix decompositions, optimization routines. A
production implementation of random forests is thousands of lines of code.

But Python is a language built on packages. Someone else has already:

» Written the complex algorithms
» Debugged edge cases
» Optimized for speed (often using C/Fortran under the hood)

So our code stays high-level and brief:

1. Load data -» pandas.read_csv()

2. Prepare features - pandas/numpy operations

3. Split data - sklearn.model_selection.train_test _split()
4. Fit model -» model.fit(X_train, y_train)

5. Make predictions - model.predict(X_test)

6. Evaluate - Compare predictions to truth

Every ML project follows this pattern. The hard work is understanding which model to use and how to interpret results—
that’s what this course teaches.

Rotman
Commerce

RSM338 | Kevin Mott

32/ 41

Example: Complete ML Pipeline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test _split

1. Create some fake stock data
np.random.seed(42)
data = pd.DataFrame({
'market_return': np.random.randn(100),
'stock_return': np.random.randn(100)

})

data['stock _return'] = 0.5 + 1.2 x datal'market_return'] + 0.3 * np.random.randn(100)

Visualize the raw data
plt.scatter(datal'market_return'], datal'stock _return'])

plt.xlabel('Market Return')

e | L SRt) e | S B A | o P e | D I D S meve [| B}

Step 1: Look at your data

3 ... o
o c
2 ° Y o ®
e ?%0°
1 o~ e ®
c \\.. .ﬂ. ¢
S ®e)
3 . o*® $8=% ®
3 * oo ‘% Rotman
5 o ¥ O Commerce

%
RSM338 | Kevin Mott

32/ 41

§ .'Oz‘ ®
n [PN o ®
—1 L
.. Y
o
@
o ¢ S °
-2 []
-3 ®
-2 -1 0 1 2

Market Return

N

. Split into training and test sets

datal['market_return']] # Features (what we observe)

= data['stock_return'] # Target (what we predict)

train, X_test, y_train, y_test = train_test _split(X, y, test _size=0.2)

#
X
y
X_

3. Fit model
model = LinearRegression()
model.fit(X_train, y_train)

print(f"Estimated beta: {model.coef_[0]:.2f}")
print(f"Estimated alpha: {model.intercept_:.2f}")

Visualize the fitted model
plt.scatter(X_train, y_train, label='Training data')
X_line = np.linspace(-3, 3, 100)
plt.plot(x_line, model.intercept_ + model.coef_[@] * x_line, color='red', label='Fitted line')
plt.xlabel('Market Return')
Estimated beta: 1.28
Estimated alpha: 0.54

Rotman
Step 2: Fit the model Commerce

RSM338 | Kevin Mott

32/ 41

Step 2: Fit the model

® Training data
4 1 — Fitted line

Stock Return

Market Return

4. Predict on test data and evaluate
predictions = model.predict(X_test)

Visualize: predicted vs actual

plt.scatter(y_test, predictions)

plt.plot([-2, 31, [-2, 3], 'r—-', label='Perfect predictions') # 45-degree line
plt.xlabel('Actual Stock Return')

plt.ylabel('Predicted Stock Return')

plt.title('Step 3: Evaluate predictions')

plt.legend()
plt.show()
Step 3: Evaluate predictions Rotman
3 1 ——- Perfect predictions e commerce

RSM338 | Kevin Mott

32/ 41

-3 -2 -1 0 1 2 3
Market Return

4. Predict on test data and evaluate
predictions = model.predict(X_test)

Visualize: predicted vs actual

plt.scatter(y_test, predictions)

plt.plot([-2, 31, [-2, 3], 'r—-', label='Perfect predictions') # 45-degree line
plt.xlabel('Actual Stock Return')

plt.ylabel('Predicted Stock Return')

plt.title('Step 3: Evaluate predictions')

plt. legend()
plt.show()
Step 3: Evaluate predictions
3 1 ——- Perfect predictions 9},‘
* ®
2 e
o
c -
E PPl
g 1 ’,.»’
§ /"/0
& /"
-I-E,-'iJ 0 - .’p” ‘
2 ® -0
J2 o -~
o PR
o
-1 ”’a
/‘.””’
’f
-2 o
-2 -1 : 1 : : Rotman

Actual Stock Return

Commerce

RSM338 | Kevin Mott

33/ 41

scikit-learn: The Workhorse

Almost every ML model in scikit-learn uses the same interface:

from sklearn.some_module import SomeModel

model = SomeModel() # Create the model
model. fit(X_train, y_train) # Learn from training data
predictions = model.predict(X_test) # Apply to new data

Swapping models is easy:

Linear regression
from sklearn. linear_model import LinearRegression
model = LinearRegression()

Ridge regression (with regularization)
from sklearn. linear_model import Ridge
model = Ridge(alpha=1.0)

Random forest
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor()

The rest of the code stays the same!

You learn one interface, you can use dozens of models.

Rotman
Commerce

RSM338 | Kevin Mott

34 / 41

Reading Code: What to Focus On

When you see code in this course, don’t panic. Focus on:
1. What data goes in?

X
y

datal[['featurel', 'feature2']] # Features
data['target'] # What we predict

2. What model are we using?

model = LinearRegression() # This tells you the method

3. What comes out?

model.coef_ # The learned parameters
predictions # The model's guesses

You don’t need to memorize syntax. You need to understand what the code is doing.

Rotman
Commerce

RSM338 | Kevin Mott

35/ 41

Common Patterns You’ll See

Loading data:

data = pd.read_csv('stock_prices.csv')
Computing log returns:

datal'log_return'] = np.log(datal'price']l).diff()

Selecting columns:

X = datal[['coll', 'col2', 'col3']] # Multiple columns
y = datal['target'] # Single column

Train/test split:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

These patterns repeat constantly. After a few weeks, they’ll feel natural.

Rotman
Commerce

RSM338 | Kevin Mott

36 / 41

Part V: Limitations and Summary

Rotman
Commerce

RSM338 | Kevin Mott

37/ 41

When Machine Learning Fails

ML is not magic. It fails when its assumptions are violated.

1. Dependence on historical data

» ML learns patterns from the past
» If the future differs systematically, predictions fail

» Finance example: A model trained on bull market data may fail in a crash

2. The stationarity assumption

» Most ML methods assume the data-generating process is stable
» If relationships change over time, models become stale

» Finance example: Factor returns vary across market regimes

3. Regime changes

» Major structural breaks invalidate learned patterns
» Examples: 2008 financial crisis, COVID-19 pandemic, regulatory changes

» In 2020, many demand forecasting models failed when consumption patterns changed overnight Rotman
Commerce

RSM338 | Kevin Mott

37/ 41

1. Dependence on historical data

» ML learns patterns from the past
» If the future differs systematically, predictions fail

» Finance example: A model trained on bull market data may fail in a crash

2. The stationarity assumption

» Most ML methods assume the data-generating process is stable
» If relationships change over time, models become stale

» Finance example: Factor returns vary across market regimes

3. Regime changes

» Major structural breaks invalidate learned patterns
» Examples: 2008 financial crisis, COVID-19 pandemic, regulatory changes

» In 2020, many demand forecasting models failed when consumption patterns changed overnight

@ Reality Check

Rotman
Commerce

RSM338 | Kevin Mott

“All models are wrong, but some are useful.” — George Box

Overfitting: The Central Challenge

38 / 41

Overfitting: The model learns noise in the training data rather than true patterns.

Symptoms:

» Excellent performance on training data

» Poor performance on new data (out-of-sample)

1.5 A

1.0 A

0.5 -

0.0 1

—0.5 A

—1.0 A

-1.51

Underfitting
(too simple)
® ® ® Data
== True function
/r‘?x\. —— Linear fit
\
/
L J
¥
/@
LN
e
0.0 0.2 0.4 0.8 1.0

1.5 1

1.0 A

0.5 -

0.0 1

—0.5 1

—1.0 A

-1.5 1

Good Fit
(appropriate complexity)

® L ® Data
== True function
—— Cubic fit

Prevention strategies (covered in later weeks):

» Cross-validation (evaluate on held-out data)

» Regularization (penalize model complexity)

Overfitting
(too complex)

® Data
== True function
—— Degree-15 fit

Rotman
Commerce

RSM338 | Kevin Mott

Overfitting: The Central Challenge

39 /41

Week 2 previewed this: most return predictors fail out-of-sample (Goyal-Welch 2008). Why?

Overfitting: The model learns patterns in the training data that don’t generalize.

» Some patterns are real (signal)

» Some patterns are coincidence (noise)

» A modelfit to historical data captures both

The ML terminology:

Training error Performance on data used to fit the model
Test error Performance on new, unseen data
Overfitting Training error << Test error

Much of this course is about avoiding overfitting:

)

- - - - - ' -Wala -~ FY A -~

RSM338 | Kevin Mott

Rotman
Commerce

39 /41

» Some patterns are real (signal)
» Some patterns are coincidence (noise)

» A modelfit to historical data captures both

The ML terminology:

Training error Performance on data used to fit the model
Test error Performance on new, unseen data
Overfitting Training error << Test error

Much of this course is about avoiding overfitting:

» Train/test splits (today’s Python examples)
» Regularization (Week 5)
» Cross-validation (Week 5)

» Ensemble methods (Week 9) ggf,','}ﬂgrce

RSM338 | Kevin Mott

40 / 41

Today’s Key Takeaways

What is Machine Learning?

» Learning patterns from data rather than explicitly programming rules

» Three ingredients: model, loss function, learning algorithm

Types of Learning:

» Supervised: Labeled data - predict output from features

- Regression (continuous target) vs. Classification (categorical target)
» Unsupervised: No labels » discover structure

— Clustering, dimensionality reduction

» Reinforcement: Learn through interaction and rewards

The ML Formalism:

» Choose a model (what form should [take?)
» Define a loss function (how to measure error)

» Run a learning algorithm (find best parameters) ggf,’,'},‘,’;’,ce

RSM338 | Kevin Mott

40 / 41

» Unsupervised: No labels - discover structure
— Clustering, dimensionality reduction

» Reinforcement: Learn through interaction and rewards

The ML Formalism:

» Choose a model (what form should [take?)
» Define a loss function (how to measure error)

» Run a learning algorithm (find best parameters)

Python for ML:

» scikit-learn provides a consistent interface: f1t(), predict()
» Same workflow for every model: load data > split » fit > predict > evaluate

» You don’t need to memorize syntax—focus on what the code is doing

Limitations:

» Overfitting is the central challenge; out-of-sample evaluation is essential

. , B : Rotman
» ML depends on historical data—past patterns may not persist Commerce

RSM338 | Kevin Mott

41/ 41

What’s Next

Week Topic

4 Clustering

5 Regression (linear, ridge, lasso)

6 ML & Portfolio Theory

7 Linear Classification

8 Nonlinear Classification

9 Ensemble Methods

10 Neural Networks & Deep Learning
11 Text & NLP

Each week adds new tools to your toolbox—and everything builds on the framework we introduced today. Rotman

Commerce

RSM338 | Kevin Mott

