1/59

RSM338: Machine Learning in Finance
Week 1: Math Bootcamp | January 7-8, 2026

Kevin Mott

Rotman School of Management

Rotman
Commerce

RSM338 | Kevin Mott

2 /59

Welcome to RSM338

Rotman
Commerce

RSM338 | Kevin Mott

3/59

What Is This Course About?

In traditional programming, you write explicit rules for the computer to follow: “if the price drops 10%, sell.” You specify
the logic.

Machine learning is different. Instead of writing rules, you show the computer examples and let it discover patterns
from the statistical properties of the data. The computer learns what predicts what.

Finance generates enormous amounts of data: prices, returns, fundamentals, news, filings, transactions. Machine
learning gives us tools to extract information from all of it.

Think of ML methods as tools in a toolbox. Just as an experienced contractor knows which tool is right for each job—
hammer for nails, wrench for bolts—you’ll learn which ML method is right for each problem:

» Regression: Predicting a continuous value (next month’s return)

» Classification: Assigning to categories (default vs. no default)

» Clustering: Finding natural groupings (asset classes, investor types)

» Text analysis: Extracting information from documents (earnings calls, news)

Rotman
Commerce

RSM338 | Kevin Mott

4 /59

Why Machine Learning in Finance?

Traditional finance models are elegant but limited:

» CAPM says expected returns depend on one factor (market beta)
- Fama-French adds size and value
— But there are hundreds of potential predictors...

» The efficient frontier depends on only risk-return tradeoffs and has few conditions
- But real investors may have other constraints

- Do we have good estimates of risk and return?

Machine learning lets us:

» Handle many variables at once without manual selection
» Capture nonlinear relationships

» Let the data tell us what matters

The catch: finance is noisy. Patterns that look predictive often aren’t. A major theme of this course is learning to

distinguish real signal from noise.
Rotman

Commerce

RSM338 | Kevin Mott

5/59

Course Structure

Week Topic

1 Math Bootcamp (today)

2 Financial Data

3 Introduction to Machine Learning

4 Clustering

5 Regression

6 ML & Portfolio Theory

7 Linear Classification

8 Nonlinear Classification

9 Ensemble Methods
Rotman
Commerce

[] \l o \| O a

RSM338 | Kevin Mott

5/59

3 Introduction to Machine Learning

4 Clustering

5 Regression

6 ML & Portfolio Theory

7 Linear Classification

8 Nonlinear Classification
9 Ensemble Methods

10 Neural Networks

11 Text & NLP

12 Review

Week 1 builds the mathematical foundation. Everything else builds on it.

Today’s Goal: Increase your fluency looking at mathematical expressions, recall properties of math that drive in%ict’i N

We will NOT need to solve math problems by hand or complete any proofs. Commerce

RSM338 | Kevin Mott

6 /59

About Me

Kevin Mott

» BS in Mathematics (Northeastern University, Boston, USA)
» PhD in Financial Economics (Carnegie Mellon University, Pittsburgh, USA)
— Research: Deep learning methods for macro-finance problems

- | study how neural networks can solve complex economic models

- In macroeconomics, we can’t run experiments. How to analyze policy? Simulating the macroeconomy with neural
networks.

- Infinance, pricing interest rate derivatives has always been hard. But neural networks can solve the pricing
equations efficiently.

Email: kevin.mott@rotman.utoronto.ca
Personal Website: kevinpmott.com

Course Website: rsm338.kevinpmott.com

» Here is where we will access lecture notes, which are best opened on a laptop computer in a web browser.

» There will also be PDFs for annotating. Rotman
Commerce

RSM338 | Kevin Mott

7159

A Note on Prerequisites

This course assumes you’ve seen:

» Basic statistics (means, variances, distributions)
» Some calculus (derivatives)
» Introductory finance (returns, portfolios, CAPM)

» Abit of programming

If any of that feels shaky, that’s okay. Today’s lecture reviews the math and stats foundations. The course website has
additional resources.

The goal isn’t to filter people out—it’s to get everyone to a place where the ML content makes sense.

Rotman
Commerce

RSM338 | Kevin Mott

8 /59

Office Hours & Logistics

TA Office Hours (at the Coding Cafe): Thursdays 7-8pm

» Location: Management Data Analytics Lab, Rotman South Building, 3rd floor (take the pink stairs)
» There s pizza

» Best for: clarifying assignment questions (with TA), general coding techniques (with Coding Cafe staff)

Prof. Mott’s Office Hours: Tuesdays 1-2pm (or by appointment)

» Best for: big-picture questions, grading issues, general discussions

This information is on the Quercus homepage (bottom right).

Coming Up — Week 2 Preassessment:

» In-class assessment worth 10% of your grade
» Based on Week 1 lecture material (today’s content)

» Tests basic math/stats concepts covered in this bootcamp

Rotman
Commerce

RSM338 | Kevin Mott

9/59

Today: Math Bootcamp

Rotman
Commerce

RSM338 | Kevin Mott

10/59

Today’s Goal

This lecture builds the foundation for everything that follows.

Preliminaries:

» Notation survival guide (Greek letters, subscripts, summations)

» Key functions (logarithms and exponentials)

Four main topics:

1. Statistics: Random variables, distributions, expected value, variance
2. Calculus: Derivatives and how to find minima
3. Linear Algebra: Vectors, matrices, and why they matter

4, Optimization: Putting it together—finding the best parameters

If any of this feels new or rusty, that’s fine. The goal is to get everyone on the same page before Week 2.

Rotman
Commerce

RSM338 | Kevin Mott

11 /59

Preliminaries: Notation

Rotman
Commerce

RSM338 | Kevin Mott

12/59

(Some) Greek Letters You’ll See

Don’t panic when you see Greek letters. They’re just names for quantities.

Common meaning in this course

J2 mu Mean (expected value)
o] sigma Standard deviation
rho Correlation
ﬁ beta Regression coefficient / market sensitivity
x alpha Intercept / excess return
v, theta Generic parameter
€ epsilon Error term / noise
A lambda Regularization parameter gggwnn?grce

RSM338 | Kevin Mott

12/59

Common meaning in this course

U mu Mean (expected value)
o] sigma Standard deviation
rho Correlation
B beta Regression coefficient / market sensitivity
X alpha Intercept / excess return
v, theta Generic parameter
€ epsilon Error term / noise
A lambda Regularization parameter
N eta Learning rate
When you see U, just think “the mean.” When you see O, think “the standard deviation.” ggf,’,",,‘,’;’,ce

RSM338 | Kevin Mott

13 /59

Subscripts: Keeping Track of Things

Subscripts identify which observation or which variable we’re talking about.

Time subscripts:

» ¥t =return attimel
» P;_1 =priceattimet — 1 (one period earlier)
Observation subscripts:

» X; =the value for observation I

» ;i =the target value for observation I
Variable subscripts:

» X1,X2,... ,Xp="features 1 through p

» B = coefficient for feature j

Combining them:

Rotman
Commerce

RSM338 | Kevin Mott

14 /59

Summation and Product Notation

The 2 (capital sigma) means “add up”:

n
Exi =X1+X2+ -+ Xy
i=1

Read it as: “Sumof X; fromi = 1ton”

Examples:
1 n
X=—) X; (the sample mean)
n
i=1

| _ .
Var(X) = — ;(xi — x)2 (sample variance)

The I1 (capital pi) means “multiply together”:

Rotman
n Commerce

RSM338 | Kevin Mott

14 /59

CAaAllpled.

X =

1 n
- X; (the sample mean)

i=1

| _ .
Var(X) = Z(xi — x)2 (sample variance)
n—1 4
i=1
The 11 (capital pi) means “multiply together”:
n
Hxi = X1 XX X XXpn
i=1

Why it matters for finance: Compounding returns multiply. If you earn returns R1,R >, ... , RT over T periods, your
wealth grows by:

T
Wealth growth = H(1 +R))
t=1

Rotman
Commerce

RSM338 | Kevin Mott

15/59

Preliminaries: Key Functions

Rotman
Commerce

RSM338 | Kevin Mott

16 /59

Logarithms and Exponentials

In finance, we constantly use log returns. Understanding logarithms is essential.
The exponential function: e* wheree = 2.718
The natural logarithm: In(X) is the inverse of *

They undo each other: In(e*) = x and "™ = x

Key properties (these are why logs are so useful):

» Logs turn multiplication into addition: In(a X b) = In(a) + In(b)
» Logs turn division into subtraction: In(a/b) = In(a) — In(b)
» Logs turn exponents into multiplication: In(a?) = b - In(a)

P—P;_;

Log returns: Instead of the simple return Ry = p_ o We often use:
Py
ey = 11'1(1 +Rt) = In — ln(Pt)—ln(Pt_l)
t—1
Rotman
Why log returns are better: Commerce

RSM338 | Kevin Mott

16 /59

ol

t—1

It =ln(1+Rt)=ln() =ln(Pt)—ln(Pt_1)

Why log returns are better:

1. Additivity: Multi-period log returns justadd up: ¥1-7 =r1 + 1y + - +rr7
2. Symmetry: A +50% log return followed by -50% gets you back to start

3. Normality: Log returns are closer to normally distributed

Common math functions like * and In(X) are in the numpy library, which by convention we import as np:

import numpy as np

Computing log returns from prices
prices = np.array([100, 105, 102, 108, 110])
log_returns = np.log(prices[1:]) - np.log(prices[:-1])

print(f"Prices: {prices}")

print(f"Log returns: {log_returns}")

print(f"Sum of log returns: {log_returns.sum():.4f}")
print(f"ln(final/initial): {np.log(prices[-1]1/prices([0]):.4f}") # Same!

Prices: [100 105 102 108 110]

Log returns: [0.04879016 -0.02898754 0.05715841 0.01834914]
Sum of log returns: 0.0953 Rotman
In(final/initial): 0.0953 Commerce

RSM338 | Kevin Mott

17 /59

Part I; Statistics

Rotman
Commerce

RSM338 | Kevin Mott

18 /59

What Is a Random Variable?

A random variable is a quantity whose value is determined by chance.

Examples:

» Tomorrow’s S&P 500 return
» The outcome of rolling a die

» Whether a borrower defaults on a loan

We don’t know the exact value in advance. So how can we make informed guesses about future stock returns, or assess
credit risk, or predict anything at all?

Notation: We typically use capital letters like X, Y, R for random variables. When we write X = 3, we mean “the
random variable X takes the value 3.

Rotman
Commerce

RSM338 | Kevin Mott

19/59

From Data to Distributions

We can’t predict the exact value of a random variable. But we often have historical data—past realizations of the same
random process.

By looking at many past realizations, we can see patterns: some outcomes happen frequently, others are rare. This
pattern of “how likely is each outcome?” is called a distribution.

Let X be the random variable representing which side of the die is revealed.

Matplotlib gives us plotting capabilities
import matplotlib.pyplot as plt

np.random.seed(42)
sample_sizes = [100, 1000, 10000, 100000, 1000000]

fig, axes = plt.subplots(1, 5, figsize=(15, 3), sharey=True)

for ax, n in zip(axes, sample_sizes):
rolls = np.random.randint(1, 7, size=n)
values, counts = np.unique(rolls, return_counts=True)
ax.bar(values, counts / n)
ax.axhline(1/6, color='red', linestyle='—-') # True probability
ax.set_title(f'n = {n:,}")
ax.set_xlabel('Xs")

axes[0].set_ylabel('$p(X)$")

plt.tight_layout()

plt.show() Rotman

n=100 n= 1,000 n= 10,000 n= 100’000 n= 1’000'000 commerce

RSM338 | Kevin Mott

19/59
plt.show()

n =100 n = 1,000 n = 10,000 n = 100,000 n= 1,000,000

With only 100 rolls, the pattern is noisy. With a million rolls, it’s nearly perfect—each value of X appears almost exactly
1/6 of the time (red dashed line). More data gives us a clearer picture of the true distribution.

This is a uniform distribution: each outcome equally likely.

When we write X ~ Distribution, we’re saying: “the random variable X follows this pattern.”

Once we know (or estimate) a distribution, we can compute useful summary quantities:

» The expected value [E| X | — the average outcome if we repeated the process many times

» The variance Var(X) — how spread out the outcomes are around the mean

» The probability of specific events — how likely is a 10% loss? A default?

Rotman

These are the building blocks of statistical estimation and prediction. Commerce

RSM338 | Kevin Mott

20/59

The Normal Distribution

The normal distribution (or Gaussian) is the “bell curve.” Most values cluster near the center, with extreme values
increasingly rare.

We write: X ~ O (u, o)

» U (mu) = the center (mean)

» O (sigma)=how spread out itis (standard deviation)

2 - variance

» O

from scipy.stats import norm

np.random.seed(42)
sample_sizes = [100, 1000, 10000, 100000, 1000000]
x_grid = np.linspace(-4, 4, 100)

fig, axes = plt.subplots(1l, 5, figsize=(15, 3), sharey=True)
for ax, n in zip(axes, sample_sizes):
samples = np.random.normal(loc=0, scale=1, size=n)
ax.hist(samples, bins=30, density=True)
ax.plot(x_grid, norm.pdf(x_grid), color='red', linestyle='—-') # True density
ax.set_title(f'n = {n:,}")
ax.set_xlabel('Xs")
axes[0].set_ylabel('$p(X)$")

Rotman
Commerce

RSM338 | Kevin Mott

from scipy.stats import norm

np.random.seed(42)
sample_sizes = [100, 1000, 10000, 100000, 1000000]
x_grid = np.linspace(-4, 4, 100)

fig, axes = plt.subplots(1, 5, figsize=(15, 3), sharey=True)
for ax, n in zip(axes, sample_sizes):
samples = np.random.normal(loc=0, scale=1, size=n)
ax.hist(samples, bins=30, density=True)
ax.plot(x_grid, norm.pdf(x_grid), color='red', linestyle='—-') # True density
ax.set_title(f'n = {n:,}")
ax.set_xlabel('X"')
axes[0].set_ylabel('$p(X)$")
plt.tight_layout()
plt.show()

n =100 n = 1,000 n = 10,000 n = 100,000 n = 1,000,000

Same pattern: with more data, the histogram converges to the true bell curve (red dashed line).

RSM338 | Kevin Mott

20/59

Rotman
Commerce

21/59

The Bernoulli Distribution

The Bernoulli distribution models yes/no outcomes: something happens (1) or doesn’t (0).

We write: X ~ Bernoulli(p)

» D = probability of success (getting a 1)

» 1 — p =probability of failure (getting a 0)

Finance examples: Does a borrower default? Does a stock beat the market? Is a transaction fraudulent?

Let X = 1 ifa coinflipis heads, X = 0 if tails, with p = 0.5. Same pattern as before: more flips = better estimate of
the true probability.

np.random.seed(42)
p =0.5 # Fair coin

sample_sizes = [100, 1000, 10000, 100000, 1000000]

fig, axes = plt.subplots(1, 5, figsize=(15, 3), sharey=True)
for ax, n in zip(axes, sample_sizes):
flips = np.random.binomial(1l, p, size=n)
values, counts = np.unique(flips, return_counts=True)
ax.bar(values, counts / n)

ax.axhline(p, color='red', linestyle='—-') # True probability
ax.set_title(f'n = {n:,}") Rotman
ax.set_xlabel('X") Commerce

RSM338 | Kevin Mott

21/59

Let X = 1 ifa coinflipis heads, X = 0 if tails, with p = 0.5. Same pattern as before: more flips = better estimate of
the true probability.

np.random.seed(42)
p =0.5 # Fair coiln
sample_sizes = [100, 1000, 10000, 100000, 1000000]

fig, axes = plt.subplots(1, 5, figsize=(15, 3), sharey=True)
for ax, n in zip(axes, sample_sizes):
flips = np.random.binomial(1l, p, size=n)
values, counts = np.unique(flips, return_counts=True)
ax.bar(values, counts / n)
ax.axhline(p, color='red', linestyle='—-') # True probability
ax.set_title(f'n = {n:,}")
ax.set_xlabel('Xs")
ax.set_xticks([0, 1])
axes[0].set_ylabel('$p(X)$")
plt.tight_layout()
plt.show()

n =100 n=1,000 n = 10,000 n = 100,000 n = 1,000,000

0 1) 0 1 — 0 1 ‘ 0 1 d 0 1 Rotm an
Commerce

RSM338 | Kevin Mott

22 /59

Why the Normal Distribution Shows Up Everywhere

Here’s something remarkable. Suppose we run many experiments, each with 1 coin flips, and compute the sample
mean X = % > ?:1 X ; in each experiment. What does the distribution of X look like?

np.random.seed(42)

p = 0.5

n_experiments = 5000

sample_sizes = [100, 1000, 10000, 100000, 1000000]

fig, axes = plt.subplots(1, 5, figsize=(15, 3))

for ax, n in zip(axes, sample_sizes):
Run 5000 experiments, each with n flips
sample_means = np.random.binomial(n, p, size=n_experiments) / n
ax.hist(sample_means, bins=30, density=True)
ax.axvline(p, color='red', linestyle='—-') # True mean
ax.set_title(f'n = {n:,}")
ax.set_xlabel('$\\bar{X}$")

axes [0].set_ylabel('$p(\\bar{X})$")

plt.tight_layout()

plt.show()

n =100 n n = 10,000

n = 100,000 n = 1,000,000
80 _ 250 7 y !

800 -

I
— N
o
o
o

200 -
60 600 -
150 -

40 - 400 A

Rotman
Commerce

100 -

20 A 200 A

RSM338 | Kevin Mott

22 /59

n =100 n = 10,000 n = 100,000 n = 1,000,000

800 A

80 A 250 N

12.5 4 25 1
200
20 - 60 600 -
s 150 -

40 - 400 A

1o 100 -

20 1 200 -

50 A

5_

0 0-

0.450 0.475 0.500 0.525 0.550 0.48 049 050 0.51 0.52 0.495 0.500 0.505 0.499 0.500 0.501 0.502
X X X X

Two things happen as 1 increases:

1. The estimates get better — the distribution of X concentrates around the true mean. This is the law of large
numbers.

2. The distribution becomes normal — no matter what the underlying distribution looks like (here: just 0s and 1s), the
distribution of sample means becomes a bell curve. This is the central limit theorem.

In fact, the CLT tells us exactly how the sample mean is distributed:

2
— o
X ~0 , —
man

The spread of our estimates shrinks like 0/4/n. To cut your estimation error in half, you need four times as mucfgg merce

RSM338 | Kevin Mott

23 /59

Discrete vs. Continuous Distributions

We’ve seen two types of distributions:

Discrete distributions — X takes on a finite (or countable) set of values.

» Examples: dierolls (1, 2, 3, 4,5, 6), loan defaults (0 or 1), number of trades

» We can list each possible value and its probability p(x)

» The expected value is a probability-weighted sum:

E[X]=) x - p(x)

Continuous distributions — X can take any value in a range.

» Examples: stock returns, interest rates, time until default

» We describe probabilities with a density function p(X)

(i) Advanced: Continuous expected value

Rotman
For continuous distributions, the expected value is a probability-weighted integral: Commerce
RSM338 | Kevin Mott

23 /59

DISCrete aistriputions — . A dKesS Or11 d 1iniwe (Or countuapie) set O1 values.

» Examples: dierolls (1, 2, 3, 4,5, 6), loan defaults (0 or 1), number of trades

» We can list each possible value and its probability p(x)

» The expected value is a probability-weighted sum:

[X]=), x - p(x)

Continuous distributions — X can take any value in a range.

» Examples: stock returns, interest rates, time until default

» We describe probabilities with a density function p(X)

@ Advanced: Continuous expected value

For continuous distributions, the expected value is a probability-weighted integral:

E[X] = /x - p(x) dx

Rotman
Commerce

RSM338 | Kevin Mott

An integral is just a continuous sum—same mechanics, different notation.

24 /59

Expected Value (Mean)

The expected value of a random variable is its mean—the probability-weighted average of all possible outcomes.

Notation:

C[X] or E[X] oru

Discrete case: If X can take values X1, X2, ... , Xk with probabilities p(X1), p(X2), ... , p(Xk):

k
[X]=) X - p(a) = X1 - p(xX1) + %2 p(X2) + = + Xk p(Xk)
i=1

Each outcome is weighted by how likely it is. Outcomes that happen often contribute more to the average.

Expected value of functions: We can also take the expected value of any function g(X). Same idea—probability-
weighted sum of the function values:

This is how we’ll define variance: Var(X) = E[(X — u)?], the expected squared deviation from the mean.

ﬂu ANCEen*

k
(801 =) g(x) - p(xi)
i=1

Rotman
Commerce

RSM338 | Kevin Mott

24 /59

=\l = /o 8\ PR
i=1

This is how we’ll define variance: Var(X) = E[(X — u)?], the expected squared deviation from the mean.

(i) Advanced: Continuous case

If X can take any value in a range, the sum becomes an integral:

E[X] = / x - p(x)dx
Same idea: weight each value X by its density p(x), then “add up” over all values.

From samples: When we have data X1, X», ... , X5, we estimate the expected value with the sample mean:

1 n
)_C=szi

i=1

This is equivalent to weighting each observation equally (probability 1/7 each).

Why outliers distort the mean: In the formula 2, X - p(X), even a rare event (low p(X)) can contribute heavily if X is

extreme. This is why distributions with “fat tails” (rare but extreme events) can have very different means than y%lc,&man
guess from typical outcomes. Commerce

RSM338 | Kevin Mott

25/59

Variance and Standard Deviation

Variance measures how spread out values are around the mean. It’s the expected squared deviation from U:

Var(X) = E[(X — w)°]

Notation: Var(X) or o2

Discrete case: The variance is a probability-weighted sum of squared deviations:

k
Var(X) = Z(xi - /Ll)2 - p(Xi)
i=1

Outcomes far from the mean (large (X; — ,u)z) contribute more to variance. This is why distributions with extreme
outcomes have high variance.

@ Advanced: Continuous case

Var(X) = / (x — u)* - p(x)dx

Rotman
Commerce

RSM338 | Kevin Mott

25/59

k
Var(X) = Z(Xi - M)2 - p(Xxi)
i=1

Outcomes far from the mean (large (X; — ,u)z) contribute more to variance. This is why distributions with extreme
outcomes have high variance.

@ Advanced: Continuous case

Var(X) = / (x—p)* - p(x)dx

Standard deviation is the square root of variance—it’s in the same units as X:

o =+ Var(X)

1

T D ?:1 (X; —)_6)2. The n — 1 (instead of n) corrects for the fact

From samples: We estimate variance with §% =

that we estimated Y with X.

In finance: Standard deviation of returns is called volatility. A stock with 20% annualized volatility has much MOLe & marn
uncertain returns than one with 10% volatility, even if they have the same expected return. Commerce

RSM338 | Kevin Mott

26 /59

Covariance and Correlation

Covariance measures whether two variables move together.

Cov(X,Y) = E[(X — ux)(Y — uy)]

» Positive covariance: when X is high, Y tends to be high

» Negative covariance: when X is high, Y tends to be low

Correlation scales covariance to [-1, 1]:

Cov(X,Y)
Pxy =
Ox ' Oy
+1 Perfect positive relationship
0 No linear relationship

Rotman
Commerce

.- rF - Y - . - -

RSM338 | Kevin Mott

26 /59
(A VAL VS WES I Bl 'S L P2 N MX I\ 4 MY)]

» Positive covariance: when X is high, Y tends to be high

» Negative covariance: when X is high, Y tends to be low

Correlation scales covariance to [-1, 1]:

Cov(X,Y)
PXy =
Ox ° Oy
+1 Perfect positive relationship
0 No linear relationship
-1 Perfect negative relationship

In finance (recall RSM332): Covariance and correlation are the foundation of portfolio theory. Diversification works

because assets with low or negative correlation reduce portfolio variance. The efficient frontier, CAPM, and beta all build

Rotman
on these concepts. Commerce

RSM338 | Kevin Mott

27 /59

From Correlation to Linear Regression

Correlation tells us whether two variables move together. Linear regression goes further: it finds the best-fitting line.

Y=a+pX+c¢

» & (alpha) =intercept (where the line crosses the y-axis)
» [3 (beta) = slope (how much Y changes when X increases by 1)

» € (epsilon) =error term (the part we can’t explain)

The sign of 3 matches the sign of correlation:

» Positive correlation - positive slope (upward line)
» Negative correlation » negative slope (downward line)

» Zero correlation - zero slope (flat line)

from sklearn. linear_model import LinearRegression

np.random.seed(42)
market = np.random.normal(@, 0.02, 100) Rotman
stock = 1.2 * market + np.random.normal(@, 0.01, 100) Commerce

RSM338 | Kevin Mott

27 /59

stock = 1.2 * market + np.random.normal(@, 0.01, 100)

Fit a linear regression using sklearn

model = LinearRegression()

model. fit(market.reshape(-1, 1), stock) # sklearn expects 2D input

print(f"Intercept (a): {model.intercept_:.4f}")
print(f"Slope (B): {model.coef_[0]:.4f}")
print(f"Correlation: {np.corrcoef(market, stock)[0Q,1]:.4f}")

Plot

plt.scatter(market, stock)

plt. plot(market model predict(market.reshape(-1, 1)), color='red', label=f'f = {model.coef_[0]:.2f}")
Intercept (a): 0.0001
Slope (B): 1.1284
Correlation: 0.9082

0061 4 _113 N

0.04 A

0.02 1

0.00 A

Stock return (Y)

—0.02 1

—0.04 -

Rotman
Commerce

RSM338 | Kevin Mott

27 /59

priantir i1nterceprt (). 1MoAdcC L. L.NLCrCcepi_..415)
print(f"Slope (B): {model.coef_[0]:.4f}")
print(f"Correlation: {np.corrcoef(market, stock)[0Q,1]:.4f}")

Plot

plt.scatter(market, stock)

plt. plot(market model predict(market.reshape(-1, 1)), color='red', label=f'B = {model.coef_[0]:.2f}")
Intercept (a): 0.0001
Slope (B): 1.1284
Correlation: 0.9082

0.06 {5 _ 113 N
0.04 -

0.02 A

0.00 A

Stock return (Y)

—0.02 1

—0.04

—0.06 -

—-0.04 —0.02 0.00 0.02 0.04
Market return (X)

This is the foundation of machine learning: finding relationships in data. sklearn (scikit-learn) is the library we lbus%g)crm

ML throughout this course. Commerce

RSM338 | Kevin Mott

28 /59

Part Il;: Calculus

Rotman
Commerce

RSM338 | Kevin Mott

29 /59

Functions: A Quick Reminder

A function takes an input and produces an output: [(X) = x?

» Inputx = 3 > Output f(3) =9
» Input X = —2 - Output f(-2) =4

We can visualize functions by plotting input (X-axis) against output (y-axis):

f(x) = x? fix) =2x+1 f(x) = In(x)
8 - 6- a
4 -
6 - 0
— — 2 7] —
ba > >
[reg 4 - [reeg 0 - [y
—1 -
2 =27
—4 - -2
0 -
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 0.0 0.5 1.0 1.5 2.0 2.5 3.0

In ML, we’ll work with functions that measure error—and we’ll want to find the input that makes the error as small as
possible.

Rotman
Commerce

RSM338 | Kevin Mott

Slope: Rise Over Run

30/59

For a straight line, the slope tells you how steep it is:

rise Ay _ y2 -y

slope = — =
P run AXx
» Positive slope: line goes up as you move right
» Negative slope: line goes down as you move right

» Zero slope: flat line

X2 — X1

Zero slope

Positive slope Negative slope
4 - 3
1.04 -
2 -
2 .
14 1.02 -
X 01 X 0 = 1.00 -
-1 1 i
. 0.98
-2
0.96 -
—4 - -3
-2 -1 0 1 2 =2 -1 0 1 2 -2

But what about curves? The slope is different at every point...

RSM338 | Kevin Mott

Rotman
Commerce

31/59

Derivatives: Slope at a Point

The derivative is the slope of a curve at a specific point—the “instantaneous” rate of change.

Imagine zooming in on a curve until it looks like a straight line. The slope of that line is the derivative.

Zoomed out Zooming in... L5 Looks like a line!

1.50 A

1.25 -

f(x)
f(x)
f(x)

1.00 -

0.75 -

0.50 -

Atx = 2,the curve (x) = (x — 1)? has slope 2. We write: f/(2) = 2.

Rotman
Commerce

RSM338 | Kevin Mott

32/59

Derivative Notation

Several notations mean the same thing—the derivative of f with respect to X:

oo df _d
f(x)—a— dxf(x)

» f/(x)—“f prime of x”

, 4

7, — dfdx” (Leibniz notation, emphasizes “change in f perchangein X”)

What the derivative tells you:

» 7 (x) > 0: function is increasing at X
> f’(x) < 0: function is decreasing at X

» f7(x) = 0:function is flat at X

Rotman
Commerce

RSM338 | Kevin Mott

33/59

Why We Care: Finding Extrema

An extremum (plural: extrema) is a minimum or maximum of a function.

At an extremum, the function is flat—it’s neither increasing nor decreasing. That means the derivative is zero.

At the minimum, the slope is zero

— fix)=(x-1)?
® Minimum: f(x)=0

This is the key insight: To find where a function is minimized (or maximized), find where its derivative equals zero.

Rotman
Commerce

RSM338 | Kevin Mott

34 /59

Finding Minima: The Recipe

To find the minimum of f (X):

1. Take the derivative f’(x)

2. Set f(x) = 0 and solve for x

You won’t be computing derivatives by hand in this course—computers handle that. But you need to understand the
logic: the minimum is where the slope is zero.

10 -

— fix)=x2—-4x+5
@ Minimumatx"* =2

0 0] > 3 4 5
Rotman
Commerce

RSM338 | Kevin Mott

34 /59

To find the minimum of [(X):

1. Take the derivative f'(x)

2. Set f(x) = 0 and solve for x

You won’t be computing derivatives by hand in this course—computers handle that. But you need to understand the
logic: the minimum is where the slope is zero.

10 A

f(x)

— fix)=x?—4x+5
@ Minimumatx® =2

-1 0 1 2 3 4 5

Why this matters for ML: In machine learning, we define a loss function that measures error. Training a model means

T Do T : Rotman
finding the parameters that minimize that loss—finding where the slope is zero. Commerce

RSM338 | Kevin Mott

35/59

Functions of Multiple Variables

So far we’ve looked at functions of one variable: f (X). But what if a function depends on two (or more) variables?

f(x1,x2) = =(x] + x3)

This function takes two inputs and produces one output. We can visualize it as a surface in 3D:

f(x1, X2) = —(x% + x3) Cross-section: x, =0 Cross-section: x; =0
0.0 0.0

—0.5 A1

—1.0 A

—1.5 1

—-2.0 -

(0. x2)

—2.5 1

—3.0 ~

—3.5 1

The maximum is at the origin (0, 0)—the top of the “dome.” In both cross-sections, the tangent line is flat (slope = 0) at

the extremum.

Rotman
Commerce

RSM338 | Kevin Mott

36 /59

Partial Derivatives: Slope in One Direction

How do we find the extremum of a function with multiple variables?
We ask: if | move in just the X1 direction (holding X» fixed), what’s the slope? That’s the partial derivative with respect

to X1. We can do the same for X».

Look back at our cross-sections: each one shows the slope in one direction. At the top of the dome, both cross-sections
are flat—the slope is zero in every direction.

At an extremum, all partial derivatives are zero. The surface is flat no matter which direction you look. This is what
optimization algorithms search for.

Rotman
Commerce

RSM338 | Kevin Mott

37 /59

Part lll: Linear Algebra

Rotman
Commerce

RSM338 | Kevin Mott

38 /59

Why Linear Algebra?

We’ve seen that derivatives are slopes—and slopes are lines. Linear relationships are easy to work with: easy to
compute, easy to optimize, easy to interpret.

Vectors and matrices let us extend this to multiple dimensions:

One variable Multiple variables

Derivative ' (x) Gradient V f (vector of partial derivatives)
Slope 3 Coefficient vector 8

y=a+px y=Xp+e€

The structure is the same—we just stack things into vectors and matrices. Instead of writing 1 separate equations, we
write one matrix equation. This is the language of machine learning.

Rotman
Commerce

RSM338 | Kevin Mott

39 /59

Vectors

A vector is an ordered list of numbers. We write vectors in bold: X

Wesay X € R" meaning “X is a vector of 1 real numbers.”

For matrix multiplication, think of a vector as an (1 X 1) matrix—a matrix with 1 rows and 1 column.

Vectors in numpy

X = np.array([1, 2, 3, 4, 5])

print(f"x = {x}")

print(f"x has {len(x)} elements")

print(f"x[0] = {x[0]}") # First element (Python is 0-indexed)

X = [12 3 4 5]
X has 5 elements
x[0] =1

Rotman
Commerce

RSM338 | Kevin Mott

40 /59

Matrices

A matrix is a 2D array of numbers. We write matrices in bold capitals: X

Xnl Xn2 - Xnp

We say X € R™P meaning “X has 1 rows and p columns.”

» Rows =observations (e.g., different stocks, different days)

» Columns = features (e.g., different variables)

X = np.array([[1, 2, 3],

[4, 5, 6]])
print(f"X has shape {X.shape}") # (rows, columns)
print(f"X =\n{X}")

X has shape (2, 3)

X = Rotman
[[2 3] Commerce

RSM338 | Kevin Mott

41 /59

Transpose

The transpose flips rows and columns. We write it as X’ or X" .

X—ll l — X =
4 5 6

W N =
AN DN B~

An (n X p) matrix becomes (p X n) after transposing.

X = np.array([[1, 2, 3],
[4, 5, 6]])

print(f"X shape: {X.shapel}")
print(f"X' shape: {X.T.shape}")
print(f"X' =\n{X.T}")

X shape: (2, 3)
X' shape: (3, 2)

X' =
[[1 4]
[2 5]
[3 6]]
Rotman
Commerce

RSM338 | Kevin Mott

42 /59

Matrix Multiplication

To multiply matrices A and B, the inner dimensions must match:

(m X n)-(n X p) = (m X p)

These must be the same!

The result has the same number of rows as A and the same number of columns as B.

The dot product is a special case—two vectors of the same length produce a scalar:

XYy = x’y = inyi = X1Y1 + X2V2 + -+ XuVn
i

becauseX'yis(1l xn) - (nx 1) = 1,ascalar.

X = np.array([1, 2, 3])

y = np.array([4, 5, 6])

Dot product: 14 + 2%5 + 3%6 = 32
print(f"x - y = {np.dot(x, y)}")

X 'y =32

Rotman
Warning Commerce

RSM338 | Kevin Mott

42 /59

Warning

Matrix multiplication is NOT commutative. With scalarsa,b € R, a x b = b x a. But with matrices, AB # BA in general. The order matters!

The identity matrix I has 1s on the diagonal and 0s everywhere else. It’s the matrix analogue of multiplying by 1:
Al =JA =A

Matrix inverse: For square matrices, under the right conditions, we can find an inverse A~ such that

A'A = AA™! = I This lets us “undo” multiplication—analogous to division for scalars.
(i) Advanced: How matrix multiplication works

Each element of the output is a dot product. Specifically, element (i, j) of C = AB is the dot product of row i of A with column j of B:

n
Cij = zAikBkj
k=1

Ci> =(rowlofA)-(col20ofB)=a-f+b-h

A B C=AB

a b e f ae+bg af+bh

Rotman
Commerce

RSM338 | Kevin Mott

42 /59

A B C=AB
a b & f ae+bg af+bh
C d g h ce+dg cf+dh

In Python, use @ for matrix multiplication and . T for transpose:

A = np.array([[1, 2], [3, 4]])

B = np.array([[5, 6], [7, 81])

C=A@B

print(f"A =\n{A}\n")

print(f"B =\n{B}\n")

print(f"A @ B =\n{C}")

print(f"\nC[0,1] = A[0,:] - Bl[:,1] = 16 + 2x8 = {C[0,1]}")
print(f"\nA.T (transpose) =\n{A.T}")

A =
[[1 2]
[3 4]]

B =
[[5 6]
[7 8]]

A@B =
[[19 22]
[43 50]]

C[o,1] = A[Q,:]1 - B[:,1] = 1x6 + 2%8 = 22

A.T (transpose) =
[[1 3]
[2 41] Rotman

Commerce

RSM338 | Kevin Mott

43 /59

Linear Algebra Application: OLS

In linear regression, we want to predict) from multiple variables X1, X2, ... , Xp:

y=60+51x1+62x2+---+ﬁpxp+€

But we have 1 observations, so we need 1 equations:
y1 = fo + Prixi +Frxiz + - + BpXip + €1

V2 = Po + Pi1X21 + X2 + 0 + BpXap + €2

Yn = 60 +51xn1 +62xn2 + - +6pxnp+ €n

Stack everything into vectors and matrices:

y = zg p + €
. nxXDo+ nxl Rotman
nx1 Ppx1 Commerce

RSM338 | Kevin Mott

43 /59

VYn = 60 +ﬁ1xn1 +ﬁ2xn2 + - +6pxnp+ €n

Stack everything into vectors and matrices:

y=Xp+ e

,;('i nXPpx1 nxl

The ordinary least squares (OLS) solution is: f§ = (X’X)_1 X’y
(i) Advanced: Where does the OLS formula come from?

Start withy = X + €. In expectation, € averages to zero, so we want to solvey = X for .
We'd like to “divide by X” but X is (1 X p)—not square, so not invertible!

The trick: premultiply both sides by X' to make it square:
X’y = X'Xﬁ
Now X'Xis (p X p)—square and invertible. Premultiply both sides by (X' X))~ :
X'X) ' X'y = X'X)"I1X'XpB
X'X)"' X'y =1
p=XX)"' Xy

Rotman
Commerce

RSM338 | Kevin Mott

44 /59

Vectors Have Direction

U1
AvectorinR? is just two numbers: v = [l
L2

But we can also think of it as an arrow that points somewhere:

Vectors as arrows from the origin

(1, 2)

(-1, 1) (2, 1)

V2

(0.5, -1.5)

-2 -1 0 1 2 3
Vi

The vector l l points “2 units right and 1 unit up.”

2
1 Rotman
Commerce

RSM338 | Kevin Mott

Linear Algebra Application: The Gradient

45 /59

The gradient is the vector of all partial derivatives:

of

8x1
of
Vv f — ax2
of
ax,

Since the gradient is a vector, it points in a direction. Which direction? The direction of steepest increase.

To find @ minimum: follow —V f (the direction of steepest decrease).

f(X1, X3) = —(xf +x§): gradient vectors point uphill (toward max)

2.0 124(&(

1.5

1.0

0.5

0.0

X2

RSM338 | Kevin Mott

Rotman
Commerce

45 /59

ax1

of

6x2

<
~h
Il

df
axp

Since the gradient is a vector, it points in a direction. Which direction? The direction of steepest increase.

To find a minimum: follow —V f (the direction of steepest decrease).

f(xl')ézt)) = —(x? + x3): gradient vectors point uphill (toward max)

T ERNNN\A

1.5 -

1.0 -

0.5 1

< 0.0

—0.5 A

—1.0 A1
&

s \\
AN

-20 -15 -1.0 -0.5

0.0 0.5 1.0
X1

Rotman
Commerce

RSM338 | Kevin Mott

46 / 59

Part IV: Optimization

Rotman
Commerce

RSM338 | Kevin Mott

47 /59

The Argmin Notation

When we write:

0" = arg mgin [1(6)

We mean: “Q* is the value of @ that minimizes 1.

» miIn gives you the minimum value of the function

» arg min gives you the input that achieves that minimum

Example: If f(x) = (x — 3)?, then:

» 0 = miny f(X) (the minimum value)

» 3 = arg miny f(X) (the X that achieves it)

Rotman
Commerce

RSM338 | Kevin Mott

— 48 / 59

Machine Learning Is Optimization

The ML problem:

Given data (X, Y), find parameters @ that minimize a loss function:
0" = arg mgn [(0; X, y)

For linear regression:

» Loss function: O(B) = X -, (Vi — X/ p)*
» Solution: B = (X'X) 1 X'y

(i) Advanced: Closed-Form Solutions vs. Algorithms

OLS has a nice closed-form solution: we can write down a formula and compute the answer directly.

Most ML methods don’t have this luxury. For neural networks, random forests, and many other models, there’s no formula—we have to search for the optimum iteratively
using algorithms like gradient descent. That’s why we spend so much time on optimization in this course!

Everything we covered today is a building block for this: - Statistics tells us what we’re estimating - Calculus tells us how

to find minima - Linear algebra gives us compact notation - Optimization ties it all together

Rotman
Commerce

RSM338 | Kevin Mott

49 /59

What’s Next

Week Topic

2 Financial Data: returns, distributions, estimation

3 Introduction to Machine Learning

4 Clustering

5 Regression

6 ML & Portfolio Theory

7-8 Classification

9 Ensemble Methods

10 Neural Networks

11 Text & NLP
Rotman
Commerce

RSM338 | Kevin Mott

50/59

Appendix: Setting Up Your Python Environment

Rotman
Commerce

RSM338 | Kevin Mott

51/59

Step 1: Install VS Code

Visual Studio Code is a free, lightweight code editor that works on Windows, Mac, and Linux.

1. Go to https://code.visualstudio.com
2. Download the installer for your operating system

3. Run the installer and follow the prompts

VS Code is not the only option—you could use PyCharm, Jupyter notebooks directly, or even a plain text editor. But VS
Code s free, widely used in industry, and works well for this course.

Rotman
Commerce

RSM338 | Kevin Mott

52 /59

Step 2: Install Python

Windows:

1. Go to https://www.python.org/downloads
2. Download the latest Python 3.x installer
3. Important: Check “Add Python to PATH” during installation

4. Run the installer

Mac:

Python 3 may already be installed. Open Terminal and type python3 --version. If not installed:
1. Install Homebrew (follow instructions at https://brew.sh)

2. Run: brew install python

Or download directly from python.org.

Rotman
Commerce

RSM338 | Kevin Mott

53 /59

Step 3: Install the Python Extension in VS Code

1. Open VS Code
2. Click the Extensions icon in the left sidebar (or press Ctr1+Shift+X/ Cmd+Shift+X)
3. Search for “Python”

4. Install the extension by Microsoft (it should be the first result)

This extension provides:

» Syntax highlighting for Python files

» Code completion (IntelliSense)

» Ability to run Python code directly in VS Code
» Debugging support

Rotman
Commerce

RSM338 | Kevin Mott

54 /59

Step 4: Set Up Your Course Directory

Create a folder structure to keep your work organized:

RSM338/

—— Week01/

—— Week02/

—— Week03/

—— Assignments/
— Data/

To create this:

1. Create a folder called RSM338 somewhere convenient (e.g., Documents)
2. Open VS Code
3. File » Open Folder > select your RSM338 folder

4. In the Explorer sidebar, right-click to create new folders as needed

Each week, create a new . py file in the appropriate folder to follow along with lecture examples.

Rotman
Commerce

RSM338 | Kevin Mott

55 /59

Step 5: Install Required Packages

Open a terminal in VS Code (Ctrl+ ~ orCmd+" ') and run:

pip install numpy pandas matplotlib scikit-learn

These are the core packages we’ll use:

Package Purpose

numpy Numerical computing (arrays, linear algebra)

pandas Data manipulation (loading CSVs, working with tables)
matplotlib Plotting and visualization

scikit-learn Machine learning algorithms

If pip doesn’t work, try pip3 instead.

Rotman
Commerce

RSM338 | Kevin Mott

56 /59

Verify Your Setup

Create a file called test_setup.py and paste this code:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn. linear_model import LinearRegression

print("All packages imported successfully!")

Quick test
X = np.array([1, 2, 3, 4, 5])
print (f"numpy works: {x.mean()}")

Run it by clicking the play button in the top-right corner of VS Code.

If you see “All packages imported successfully!” you’re ready to go.

Rotman
Commerce

RSM338 | Kevin Mott

57 /59

Troubleshooting

“Python not found” or “pip not found”:

» Make sure you checked “Add Python to PATH” during installation
» Try restarting VS Code after installing Python

» On Mac, use python3 and pip3 instead of python and pip

Package installation fails:

» Try: python -m pip install package_name

» On Mac/Linux, you may need: pip install --user package_name
VS Code doesn’t recognize Python:

» Press Ctrl+Shift+P (or Cmd+Shift+P), type “Python: Select Interpreter”

» Choose the Python installation you just installed

If you’re still stuck, office hours are a good time to troubleshoot setup issues.

Rotman
Commerce

RSM338 | Kevin Mott

58 /59

Reminders

Rotman
Commerce

RSM338 | Kevin Mott

59/59

Before You Go...

Office Hours: Thursdays 6-7pm

» Location: Management Data Analytics Lab, Rotman South Building, 3rd floor (take the pink stairs)

This Week Only — Coding Cafe (Python Refresher):

» Thursday 5:30-7:30pm (same location)
» First hour: Python basics

» Second hour: More advanced topics, Q&A

Week 2 Preassessment:

» In-class assessment worth 10% of your grade
» Based on today’s lecture (math bootcamp material)

» Review the slides and course notes before next class

Rotman
Commerce

RSM338 | Kevin Mott

