Rotman
RSM338, WINTER 2026 Commerce

Machine Learning in Finance rsmsss)

Week 5: Regression

Table of contents

1 Introduction L L 1
2 OLS as an Optimization Problem 2
3 When OLS Struggles e 3
4 Generalizing the OLS Framework e 4
5 In-Sample vs Out-of-Sample L 5
6 The Bias-Variance Trade-off L 9
7 Regularization Methods 11
8 Model Selection and Cross-Validation 13
9 Finance Applications L L 15
10 Summary . . . Lo e 17
11 References o e e 17

1 Introduction

You already know OLS from your statistics and econometrics courses. This chapter builds on that foundation
by asking: what happens when OLS’s assumptions don’t hold, and what can we do about it?

The machine learning perspective on regression differs from the traditional statistics perspective in an
important way. In statistics courses, the focus is typically on inference—is the relationship between X and
Y statistically significant? What’s the confidence interval for 5?7 In machine learning, the focus shifts to
prediction—how well can we predict outcomes we haven’t yet observed? This shift in emphasis leads to
different tools and different concerns. We care less about whether §; is “significant” or what its “true” value
is, and more about prediction accuracy on data we haven’t seen.

This chapter covers several interconnected topics. We start with OLS as an optimization problem, then
examine when and why it fails. We’ll see how to generalize the OLS framework by relaxing assumptions
about functional form, loss functions, and coefficient constraints. The central concern throughout is the
distinction between in-sample and out-of-sample performance, formalized through the bias-variance trade-off.
We then develop regularization methods (Ridge, Lasso, Elastic Net) that combat overfitting, and discuss how
to select among models using cross-validation. Finally, we turn to finance-specific applications and pitfalls.

THIS VERSION: JANUARY 13, 2026 1 © PROFESSOR KEVIN MoTT

Rotman
RSM338, WINTER 2026 Commerce

2 OLS as an Optimization Problem

From your statistics courses, you've seen the linear regression model y = X3+ . OLS is fundamentally an
optimization problem: we choose 3 to minimize the residual sum of squares:

OLS <)
8 = argmén Z(yl —x;)% = arg min ly — X3|?
=1 !

The notation ||v|? is the squared norm of vector v—the sum of its squared elements: |v|?> = v3+v3+--+0v2 =
Z?: L v?. So |y — X is just compact notation for E?:l(yi —7;)%. The argmin formulation makes explicit
what OLS is doing: searching over all possible coefficient vectors § and selecting the one that minimizes

~OLS
squared errors. This optimization problem has a closed-form solution: 3 = (X'X) X Ty.

OLS is the workhorse of statistics and econometrics for good reasons. Each coefficient 3; tells you how much
Y changes when X increases by one unit, holding other variables constant. The method comes with standard
errors, allowing us to test whether coeflicients are statistically significant and build confidence intervals. And
the closed-form solution means no iterative algorithms are needed—just matrix algebra.

OLS gives reliable estimates and valid hypothesis tests when certain conditions hold. Linearity requires that
the true relationship between X and Y is approximately linear. Homoskedasticity requires that the spread
of errors is constant across all values of X—“homo” means same, “skedastic” means scatter. The plots below
illustrate the difference:

Homoskedastic: constant spreHéteroskedastic: spread grows with X

8
L IS °
P o . 12 -
7 ° o .:‘
® "o "9
(L i
61 (] .. ‘.:.,. 10 e
5 1 o %P 30 8 1 ® el e
> ® A e > % ."q
4 () o Weoo P ® °
° o Qo °
%S o L P A
N .0.0 o . o .:’ e .
i °
"o: [4 ° ’.‘0 we? .. °
2 A ° 0’ °)
® 0.0. °e ®
1. s 241¢ o o o
2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0
X X

No multicollinearity requires that predictors should not be too highly correlated with each other. When
predictors are highly correlated, X "X becomes nearly singular—hard to invert. Recall that f = (X'X) !Xy,
so small changes in the data cause large swings in [.

THIS VERSION: JANUARY 13, 2026 2 © PROFESSOR KEVIN MoTT

RSM338, WINTER 2026

Rotman
Commerce

r(xX:, Xz) =-0.14

r(Xa:, Xz) = 0.97

° 41 °
°
) 3
2 Y e o
[] P 2
1 o0 e %
i 1-
o 'o.‘.‘ ® : ° o
< o of & wn®’ X 04
0 - o ° oo o
[) ..::. —1 -
-1 1 o "o‘ .. : 2
o e -
® o .
> ° —31e
-2 0 2 -2 0 2 4
X1 X1

Consider predicting next month’s stock returns from firm characteristics. The econometrics lens asks: Does
book-to-market ratio significantly predict returns? What is the estimated effect of a 1-unit change in B/M?
Are the results robust to different specifications? The ML lens asks: If I train on 2000-2015 data, how well do
I predict 2016—2020 returns? Does adding more predictors help or hurt out-of-sample? What’s the optimal
amount of model complexity? Both lenses use regression, but they emphasize different aspects.

3 When OLS Struggles

OLS is a workhorse, but it has limitations—especially for prediction. When p (number of predictors) is
large relative to n (observations), OLS estimates become unstable; in the extreme case where p > n, OLS
doesn’t even have a unique solution. When predictors are highly correlated (multicollinearity), (X' X) is
nearly singular, and small changes in the data lead to large swings in coefficient estimates. And OLS uses all
predictors, even those that add noise rather than signal—the model fits the training data too well, including
its random noise, and generalizes poorly. This is overfitting.

A cautionary tale from finance: suppose you want to predict monthly stock returns using firm characteristics.
You have n = 500 firm-months and p = 50 characteristics: size, book-to-market, momentum, volatility,
industry dummies, and so on. With OLS, you estimate 51 parameters (50 betas plus intercept), each
coefficient has estimation error, many characteristics might be noise not signal, and the fitted model explains
the historical data well—but does it predict future returns?

Goyal and Welch (2008) examined this question in a seminal study. They tested whether classic predictors
(dividend yield, earnings yield, book-to-market, etc.) could forecast the equity premium. The finding:
variables that appeared to predict returns historically often failed completely when used to predict future
returns. Many predictors performed worse than simply guessing the historical average. This isn’t a failure of
the predictors per se—it’s a failure of OLS to generalize when signal is weak relative to noise. OLS minimizes
in-sample error. When the true signal is weak, OLS fits the noise in the training data, and this noise doesn’t
appear in the same form in new data. The noise-fitting hurts rather than helps prediction. The coefficients
are unbiased in expectation—but they have high variance. When you apply them out-of-sample, the
variance dominates. This is the heart of the bias-variance trade-off we’ll formalize later.

THIS VERSION: JANUARY 13, 2026 3 © PROFESSOR KEVIN MoTT

Rotman
RSM338, WINTER 2026 Commerce

4 Generalizing the OLS Framework

OLS makes specific choices that we can relax. There are three ways to generalize: the functional form
(linearity), the loss function (how we measure errors), and constraints on coefficients (regularization).

The OLS objective assumes the prediction is a linear combination of the features: g, = 5, + Sz, +
Bz + -+ + Byz;y,. But nothing forces us to use a linear function. We could replace x;] B with any function

f(x;): 6 = argmin, 2?21(% — fo(x,))?, where f, could be a polynomial, a tree, a neural network, or any
other function parameterized by 6. We’ll explore non-linear f in later weeks (trees, neural networks).

OLS minimizes squared error: £(8) = Z:‘: N7 —7,;)%. Squared error is convenient (calculus gives a closed-form
solution) and optimal under Gaussian errors, but it’s not the only choice. Absolute error (L1 loss),
L(p) = Z:‘: 1 1Yi — 931, is less sensitive to outliers than squared error, but has no closed-form solution and
requires iterative optimization. Huber loss is squared for small errors and linear for large errors, combining
robustness to outliers with smoothness near zero. The loss function £ defines what “good prediction”
means—choose it to match your goals.

Instead of just minimizing the loss, we can add a penalty on coefficient size:

n
minimize E (y; — ¥;)? + A - Penalty(5)
" N — e’
=1 complexity cost

fit to data

The parameter \ controls the trade-off: when A\ = 0, there’s no penalty and we get OLS; as A — oo, the
heavy penalty shrinks coefficients to zero. Regularization deliberately introduces bias (coefficients are shrunk
toward zero) in exchange for lower variance (more stable estimates). When signal is weak relative to noise,
this trade-off can improve prediction.

A norm measures the “size” or “length” of a vector. The L, norm is defined as ||v|, = (Z?zl |vi|p>1/p.
Different values of p give different ways to measure length. The L, norm (Euclidean) is ||v|, =
V0?2 +v2 + -+ v2—the familiar distance formula from the Pythagorean theorem and the default notion of
“length.” The L; norm (Manhattan) is |v|; = |vy| + |vy] + -+ + |v,,|—the sum of absolute values, called
“Manhattan” because it’s like walking along a grid of city blocks.

Now we can define our regularization penalties using norms. Ridge regression (L2 penalty) penalizes
the squared L2 norm of coefficients: Penalty(3) = |33 = ‘;’:1 B7. Lasso regression (L1 penalty)
penalizes the L1 norm of coefficients: Penalty(8) = |5|; = ;’:1 |8;]. Both penalties measure the “size” of
the coefficient vector, but in different ways, and this difference in geometry leads to very different behavior.

Putting it all together, we can generalize OLS by combining any or all of these extensions:

n
6 =argmin ¢ 3 £L(y;, fy(x;)) + A - Penalty(6)
i=1 regularization
loss function

Component OLS Choice Alternatives

Function f, Linear: x' 3 Polynomial, tree, neural network
Loss £ Squared error Absolute error, Huber, quantile
Penalty None (A =0) Ridge (L2), Lasso (L1), Elastic Net

This is the regression toolkit. Different combinations suit different problems. This chapter focuses on linear f
with regularization; non-linear f comes in later weeks.

THIS VERSION: JANUARY 13, 2026 4 © PROFESSOR KEVIN MoTT

Rotman
RSM338, WINTER 2026 Commerce

5 In-Sample vs Out-of-Sample

When we fit a model, we want to know: How well will it predict new data? Training error (in-sample)
measures how well the model fits the data used to estimate it. Test error (out-of-sample) measures how
well the model predicts data it hasn’t seen. A model’s training error is almost always an optimistic estimate
of its true predictive ability—the model has been specifically tuned to the training data, so of course it does
well there!

Overfitting occurs when a model learns the noise in the training data rather than the underlying pattern.
To illustrate, we’ll use polynomial regression. Instead of fitting a line f(z) = 5, + 8, «, we fit a polynomial
of degree d:

f(@) = By + Brz + Bya® + -+ + Byz?

Higher degree = more flexible curve = more parameters to estimate. Suppose we have just 5 data points and
the true relationship is linear (with noise):

Our 5 training points

I
=

Degree 1 (2 parameters): f(z) = 3, + f,z

THIS VERSION: JANUARY 13, 2026 5 © PROFESSOR KEVIN MoTT

Rotman
RSM338, WINTER 2026 Commerce

Degree 1: Training MSE = 0.62

I
=

Degree 2 (3 parameters): f(z) = f, + B,z + fyz?

Degree 2: Training MSE = 0.43

I
=

Degree 4 (5 parameters): flz) = Bo + 51.1‘ + o+ Byat

THIS VERSION: JANUARY 13, 2026 6 © PROFESSOR KEVIN MoTT

Rotman
RSM338, WINTER 2026 Commerce

Degree 4: Training MSE = 0.000000

I
=

5 parameters for 5 points — perfect fit (MSE 0). But the wiggles are fitting noise, not signal. And
consider extrapolation: if we predict just slightly beyond X =9 (our last training point), this polynomial
plummets—even though the data clearly suggests Y increases with X. Overfit models can give wildly wrong
predictions for interpolating or extrapolating.

With enough parameters, we can fit the training data perfectly, but perfect fit good predictions. The
model with zero training error has learned the noise specific to these 5 points; on new data, those wiggles will
hurt, not help. As model complexity increases, training error always decreases (more flexibility to fit the
data), while test error first decreases, then increases (eventually we fit noise). This is the fundamental
tension: more complexity reduces training error but may increase test error.

—— Training Error
Test Error
----- Optimal Complexity

MSE

\

Model Complexity (number of parameters)

The standard approach to evaluate predictive models is to split your data into training and test sets, fit the
model using only the training data, and evaluate using only the test data. The test data acts as a “held-out”
check on how well the model generalizes.

THIS VERSION: JANUARY 13, 2026 7 © PROFESSOR KEVIN MoTT

Rotman
RSM338, WINTER 2026 Commerce

. !I:!H:E.'
rom sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression
import numpy as np

Generate data

np.random.seed (42)

X = np.random.randn(100, 5) # 100 observations, 5 features
y = X[:, 0] + 0.5 x X[:, 1] + np.random.randn(100) * 0.5

Split: 80% train, 20% test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Fit on training data only
model = LinearRegression()
model.fit(X_train, y_train)

Evaluate on test data
train_mse = np.mean((y_train - model.predict(X_train))**2)
test_mse = np.mean((y_test - model.predict(X_test))**2)

print (f"Training MSE: {train_mse:.4f}")
print (f"Test MSE: {test_mse:.4f}")

A

f mmmmg MSE: 0.1967

Test MSE: 0.2522

In finance, data often has a time dimension, and we cannot randomly shuffle observations. A random train-test
split allows future information to leak into training, which is wrong. The right approach is to use a temporal
split: train on past data, test on future data.

Wrong: Random split Right: Temporal split
® Train @ Train
o Test ® Test

0 25 50 75 100 0 25 50 75 100
Time Time

For time series, a common approach is rolling window evaluation: train on data from time 1 to T, predict
time T + 1; move the window to train on time 2 to T + 1, predict time T + 2; and repeat. This simulates

THIS VERSION: JANUARY 13, 2026 8 © PROFESSOR KEVIN MoTT

Rotman
RSM338, WINTER 2026 Commerce

what an investor would experience: making predictions using only past data.

Rolling Window Evaluation

o] & 7 .
B Train

Window
=
(02}

=
o
1

N
o
1

o
S,
1

|

o
-
o
N
o
w
o
S
o
ul
o
(2}
o
~
o
[0}
o

6 The Bias-Variance Trade-off

When a model makes prediction errors, there are two distinct sources. Bias is error from overly simplistic
assumptions—a model with high bias “misses” the true pattern and systematically under- or over-predicts.
Think of fitting a constant when the true relationship is linear. Variance is error from sensitivity to training
data—a model with high variance is “unstable,” and small changes in training data lead to very different
predictions. Think of a high-degree polynomial that wiggles through every training point.

The dartboard analogy helps visualize this. Imagine throwing darts at a target, where the bullseye is the true

value:

Low Bias Low Bias High Bias High Bias
Low Variance High Variance Low Variance High Variance

~.

Low bias with low variance means predictions cluster tightly around the truth (ideal). High variance means
predictions are scattered (unstable). High bias means predictions systematically miss the target.

For a given test point, we can decompose the expected prediction error:

El(y— @)2] = Bias® + Variance + o2

where Bias? measures how far off the average prediction is from the truth, Variance measures how much
predictions vary across different training sets, and 2 is the irreducible noise in the data. Total error is the

THIS VERSION: JANUARY 13, 2026 9 © PROFESSOR KEVIN MoOTT

Rotman
RSM338, WINTER 2026 Commerce

sum of these three terms. We can’t reduce o®>—that’s the inherent randomness in the outcome.

Reducing bias typically increases variance, and vice versa. Simple models (few parameters) have high bias
(may miss patterns) but low variance (stable across training sets)—for example, predicting returns with just
the market factor. Complex models (many parameters) have low bias (can capture intricate patterns) but
high variance (sensitive to training data quirks)—for example, regression with 50 firm characteristics. The
optimal model balances these two sources of error.

The Bias-Variance Trade-off

— Bias?

Variance
- Total Error
—==lrreducible Error
----- Optimal Complexity

Error

Model Complexity

As complexity increases: bias falls, variance rises. Total error is U-shaped.

The classical picture says test error is U-shaped. But recent research discovered something surprising: if you
keep increasing complexity past the interpolation threshold (where training error hits zero), test error can
start decreasing again. This is double descent (Belkin et al., 2019), and it’s been observed in deep neural
networks and other highly overparameterized models.

{ —— Training Error
. Test Error
foenes Interpolation Threshold

MSE

Model Complexity (number of parameters)

For this course, the classical U-shaped picture is the right mental model. But be aware that the story is more

THIS VERSION: JANUARY 13, 2026 10 © PROFESSOR KEVIN MOTT

Rotman
RSM338, WINTER 2026 Commerce

nuanced for very large models—an active area of research. For an accessible explanation, see this excellent
YouTube video: What the Books Get Wrong about AT [Double Descent]

Underfitting (too simple) means high bias and low variance—the model doesn’t capture the true relationship,
and both training error and test error are high. Overfitting (too complex) means low bias and high variance—
the model fits noise in training data, so training error is low but test error is high. Just right means balanced
bias and variance, with both training and test error reasonably low.

Where does OLS sit in this trade-off? OLS is unbiased—in expectation, E[S] = § (under the standard
assumptions). But being unbiased doesn’t mean OLS minimizes prediction error. When the true signal is
weak, you have many predictors, or predictors are correlated, OLS estimates have high variance. The variance
component of prediction error dominates. Regularization deliberately introduces bias to reduce variance, and
for prediction, this trade-off often improves total error.

7 Regularization Methods

Ridge regression adds a penalty on the sum of squared coefficients:

. n p
Brldge = argrrgn {Z(yl — xjﬁ)2 + A Z 5]2}

i=1 =1

. ~ridge . 9 9 . . ~ridge T
In matrix form: 3 = argming {|ly — X3|* + A|B]5}. This has a closed-form solution: f3 =(XTX +

M) !X Ty. The term AI adds A to the diagonal of X "X, making it invertible even when OLS would fail. Ridge
regression shrinks all coefficients toward zero, but never sets them exactly to zero. It handles multicollinearity
by stabilizing the matrix inversion and reduces variance at the cost of introducing bias.

Ridge: coefficients shrink as A increases

.5
B2
—0— B3
v 2.0 1 —o— B4
E —0— B5
o 1.5 1 \
C
9
)
q"q:_) 1.0 @ @ O—
o \
@)
0.5 A
@ @ O—
0_0___._________. ________ i: _____ :B:.. -
0.1 1 10 100

A (regularization strength)

As X increases, coeflicients shrink toward zero but never reach exactly zero.

Lasso (Least Absolute Shrinkage and Selection Operator) penalizes the sum of absolute coefficients:

n P
~lasso _ . L Ta2 A\ ‘
B argrr};n{ > (= x[P)?+ ; 1341

7

THIS VERSION: JANUARY 13, 2026 11 © PROFESSOR KEVIN MOTT

https://www.youtube.com/watch?v=z64a7USuGX0

Rotman
RSM338, WINTER 2026 Commerce

Unlike ridge, lasso can set coeflicients exactly to zero. This means lasso performs variable selection—it
automatically identifies which predictors matter and which don’t. There’s no closed-form solution; lasso
requires iterative optimization algorithms.

Lasso: coefficients can become exactly zero
e O

B1
B2
B3
B4
B5

2.5 1

2.0 1

SEXR

Coefficient value

0.001 0.01 0.1 1 5
A (regularization strength)

As) increases, some coefficients hit exactly zero—those predictors are dropped from the model.

Use Ridge when you believe most predictors have some effect, predictors are correlated (multicollinearity),
or you want stable coefficient estimates. Use Lasso when you believe only a few predictors matter (sparse
model), you want automatic variable selection, or interpretability is a priority. In practice, try both and let
cross-validation decide.

Elastic Net combines L1 and L2 penalties:

BEN = arg mﬁin {ly = X8I + A alfl; + (1 = a)IB3]}

The parameter o controls the mix: a = 1 is pure Lasso, a = 0 is pure Ridge, and 0 < a < 1 is a combination.
Elastic Net is useful when you want variable selection (like Lasso) but predictors are correlated (where Lasso
can be unstable).

rom sklearn.linear_model import Ridge, Lasso, ElasticNet

from sklearn.preprocessing import StandardScaler

Generate data with sparse true coefficients
np.random.seed (42)

n, p = 100, 10

X = np.random.randn(n, p)

true_beta = np.array([2, 1, 0.5, 0, O, O, O, O, O, 0])
y = X @ true_beta + np.random.randn(n) * 0.5

Standardize features (required for regularization)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

THIS VERSION: JANUARY 13, 2026 12 © PROFESSOR KEVIN MOTT

Rotman
RSM338, WINTER 2026 Commerce

Fit models

ols = LinearRegression().fit(X_scaled, y)

ridge = Ridge(alpha=1.0).fit(X_scaled, y)

lasso = Lasso(alpha=0.1).fit(X_scaled, y)

enet = ElasticNet(alpha=0.1, 11 _ratio=0.5).fit(X_scaled, y)

print ("True coefficients: [2, 1, 0.5, 0, O, O, O, O, O, 01"
print (£"0LS: {np.round(ols.coef_, 2)}")

print (f"Ridge: {np.round(ridge.coef_, 2)}")

print(f"Lasso: {np.round(lasso.coef_, 2)}")

print (f"E1Net: {np.round(enet.coef_, 2)}")

A

.5 0 0, 0, 0, 0]
OLS: [1.74 1.01 0.5 0.01 -0.07 0.03 -0.09 -0. 0.02 -0.03]
Ridge: [1.72 1. 0.5 0.01 -0.07 0.03 -0.09 -0. 0.02 -0.04]
Lasso: [1.65 0.92 0.4 -0. -0. 0. -0.01 -0. -0. -0. 1]
ElNet: [1.61 0.91 0.43 0. -0. 0. -0.06 O. 0. -0.01]

L

Before applying regularization, always standardize your features. The penalty treats all coefficients
equally, so if features are on different scales, the penalty affects them unequally. For example, if X is market
cap (values in billions) and X, is book-to-market ratio (values around 0.5), the coefficient on X; will naturally

be tiny and barely gets penalized while X, gets penalized heavily. Standardization (subtract the mean and
divide by the standard deviation for each feature: z; = @) ensures all features have mean 0 and standard
J

deviation 1, so the penalty affects them equally.

8 Model Selection and Cross-Validation

We need to choose which predictors to include (or let Lasso decide), how much regularization (), and which
type of model (Ridge, Lasso, Elastic Net, etc.). The goal is to find the model that generalizes best to new
data. We can’t use training error—it always favors more complex models. We can’t use all our data for
testing—we need data to train the model. The solution is cross-validation.

K-fold cross-validation estimates test error without wasting data. Split the data into K equal-sized “folds.”
For each fold k =1, ..., K, use fold k as the validation set, use all other folds as the training set, fit the model
and compute validation error. Then average the K validation errors. This gives a more robust estimate of
test error than a single train-test split because every observation gets used for testing exactly once. Common
choices are K =5 or K = 10.

THIS VERSION: JANUARY 13, 2026 13 © PROFESSOR KEVIN MOTT

Rotman

RSM338, WINTER 2026 Commerce

5-Fold Cross-Validation (red = validation, blue = train)

Bl Train

Fold 5 I Validation

Fold 4

Fold 3

Fold

Fold 2

Fold 1

0 1 2 3 4 5
Data portion

Each data point is used for validation exactly once. We get 5 estimates of test error and average them.

-

A

-

!rom sE!earn.model_selection import cross_val_score

from sklearn.linear_model import Lasso

Generate data

np.random.seed (42)

X = np.random.randn(200, 10)

y = 2xX[:, 0] + X[:, 1] + 0.5*%X[:, 2] + np.random.randn(200)*0.5

Try different lambda values
lambdas = [0.001, 0.01, 0.1, 0.5, 1.0]
cv_scores = []

for lam in lambdas:
model = Lasso(alpha=lam)
5-fold CV, negative MSE (sklearn uses negative for "higher is better" convention)
scores = cross_val_score(model, X, y, cv=5, scoring='neg mean_squared_error')
cv_scores.append(-scores.mean())

print ("Lambda\tCV MSE")
for lam, score in zip(lambdas, cv_scores):
print (£"{lam}\t{score:.4f}")

print (f"\nBest lambda: {lambdas[np.argmin(cv_scores)]}")

!amgia HV MSE

0.001 0.2581
0.01 0.2550
0.1 0.2725

THIS VERSION: JANUARY 13, 2026 14 © PROFESSOR KEVIN MoTT

Rotman
RSM338, WINTER 2026 Commerce

Best lambda: 0.01

sklearn provides LassoCV and RidgeCV that automatically find the best A:

- ﬂ@
rom sklearn.linear_model import LassoCV

LassoCV automatically searches over lambda values
lasso_cv = LassoCV(cv=5, random_state=42)
lasso_cv.fit (X, y)

print (f"Best lambda: {lasso_cv.alpha_:.4f}")
print (f"Non-zero coefficients: {np.sum(lasso_cv.coef_ != 0)} out of 10")

print (f"Coefficients: {np.round(lasso_cv.coef_, 3)}")
A

[mes ambda: 0.0231

Non-zero coefficients: 8 out of 10
Coefficients: [1.988 1.028 0.43 0.025 O. -0.016 -0.019 -0.017 -0. 0.029]

L

For time series, standard K-fold CV is inappropriate—it randomly mixes past and future. Use TimeSeriesS-
plit which always trains on past, validates on future:

rom sklearn.model_selection import TimeSeriesSplit

TimeSeriesSplit with 5 folds
X_ts = np.arange(20) .reshape(-1, 1)
tscv = TimeSeriesSplit(n_splits=5)

print ("TimeSeriesSplit folds:")
for i, (train_idx, test_idx) in enumerate(tscv.split(X_ts)):
print (f"Fold {i+1}: Train {train_idx[0]}-{train_idx[-1]}, Test {test_idx[0]}-{test_idx[-1]13}")

N

|1me§er1esSplit folds:

Fold 1: Train 0-4, Test 5-7
Fold 2: Train 0-7, Test 8-10
Fold 3: Train 0-10, Test 11-13
Fold 4: Train 0-13, Test 14-16
Fold 5: Train 0-16, Test 17-19

L

The training set expands with each fold, respecting the temporal order.

9 Finance Applications

In finance, we evaluate predictive regressions using out-of-sample R2:
T 22
thl (ry —7¢)
T _
Zt:1 (rt - T)2

R%os =1-

where r, is the actual return at time ¢, 7, is the predicted return (using only information before time ¢),
and 7 is the historical mean return (the “naive” forecast). When R4 > 0, the model beats predicting the

THIS VERSION: JANUARY 13, 2026 15 © PROFESSOR KEVIN MoTT

Rotman
RSM338, WINTER 2026 Commerce

historical mean. When RQOO ¢ = 0, the model performs same as historical mean. When R(QJOS < 0, the model
is worse than just predicting the mean.

!e! oos_r_squared(y_actual, y_predicted, y_mean_benchmark) :

Compute out-of-sample R-squared.

y_actual: actual returns

y_predicted: model predictions

y_mean_benchmark: historical mean predictions

ss_model = np.sum((y_actual - y_predicted)**2)
ss_benchmark = np.sum((y_actual - y_mean_benchmark) **2)
return 1 - ss_model / ss_benchmark

Example: model that adds noise to actual returns

np.random.seed (42)

y_actual = np.random.randn(100) * 0.02 # Simulated monthly returns
y_predicted = y_actual + np.random.randn(100) * 0.03 # Noisy predictions
y_benchmark = np.full(100, y_actual.mean())

r2_oos = oos_r_squared(y_actual, y_predicted, y_benchmark)
print (£"00S R?: {r2_oos:.4f}")

Negative OOS R? is common in return prediction—the model is worse than the naive mean.

Several factors make financial returns difficult to predict. The low signal-to-noise ratio means the
predictable component of returns is tiny compared to the unpredictable component; monthly stock return
volatility is ~5%, and any predictable component is a fraction of that. Non-stationarity means relationships
change over time—a predictor that worked in the 1980s may not work today. Competition means markets
are full of smart participants, and easy predictability gets arbitraged away. Estimation error means even
if a relationship exists, estimating it precisely requires more data than we have. Campbell and Thompson
(2008) show that even an OOS R? of 0.5% has economic value—but achieving even that is hard.

Common pitfalls in financial ML include look-ahead bias (using information that wouldn’t have been
available at prediction time, like using December earnings to predict January returns when earnings aren’t
reported until March), survivorship bias (only including firms that survived to the present, excluding
bankruptcies, delistings, and acquisitions, which typically makes strategies look better than reality), data
snooping (trying many predictors and reporting only those that “work”—if you test 100 predictors at 5%
significance, expect 5 false positives; Harvey, Liu, and Zhu (2016) argue t-statistics should exceed 3.0, not
2.0), and transaction costs (a predictor may be statistically significant but economically unprofitable).

Regularization is particularly valuable in finance because of many potential predictors (the factor zoo
has hundreds of proposed characteristics), weak signals (true predictability is small; OLS overfits noise),
multicollinearity (many characteristics are correlated), and panel structure (with stocks x months, n is large
but so is p). Studies like Gu, Kelly, and Xiu (2020) show that regularized methods (especially Lasso and
Elastic Net) outperform OLS for predicting stock returns out-of-sample.

Before trusting any regression result, check data quality (does the data include delisted /bankrupt firms?
are variables measured as of the prediction date?), evaluation (is performance measured out-of-sample? is
the OOS R? positive? for time series, is the split temporal, not random?), statistical validity (how many
predictors were tried? are standard errors appropriate?), and economic significance (is the strategy profitable
after costs? is the sample period representative?).

THIS VERSION: JANUARY 13, 2026 16 © PROFESSOR KEVIN MOTT

Rotman
RSM338, WINTER 2026 Commerce

10 Summary

~OLS
OLS as optimization: § = argming |y — Xj|?. It’s unbiased, but can have high variance when signal
is weak or predictors are many/correlated.

Generalizing OLS: We can relax the functional form (f doesn’t have to be linear), the loss function (doesn’t
have to be squared error), and add regularization (penalize coefficient size).

In-sample vs out-of-sample: Training error always falls with complexity; test error doesn’t. This is why
we evaluate on held-out data.

Bias-variance trade-off: Simple models have high bias/low variance; complex models have low bias/high
variance. Total error is minimized at intermediate complexity. (Though double descent shows this isn’t the
whole story for very large models.)

Regularization: Ridge (L2) shrinks all coefficients; Lasso (1) can set coefficients exactly to zero. Elastic
Net combines both. Always standardize features first.

Cross-validation estimates out-of-sample performance and helps choose A. For time series, use temporal
splits.

In finance: Prediction is hard (low signal-to-noise, non-stationarity, competition). Use OOS R?, watch for
look-ahead bias, survivorship bias, and data snooping.

11 References

e Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine learning practice and
the bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849-15854.

e Campbell, J. Y., & Thompson, S. B. (2008). Predicting excess stock returns out of sample: Can
anything beat the historical average? Review of Financial Studies, 21(4), 1509-1531.

e Goyal, A., & Welch, I. (2008). A comprehensive look at the empirical performance of equity premium
prediction. Review of Financial Studies, 21(4), 1455-1508.

e Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. Review of Financial
Studies, 33(5), 2223-2273.

e Harvey, C. R., Liu, Y., & Zhu, H. (2016). ..and the cross-section of expected returns. Review of
Financial Studies, 29(1), 5-68.

e Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning (2nd ed.).
Springer. Chapters 3 and 7.

e Hull, J. (2024). Machine Learning in Business: An Introduction to the World of Data Science (3rd ed.).
Chapters 3-4.

e James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning
(2nd ed.). Springer. Chapters 5-6.

THIS VERSION: JANUARY 13, 2026 17 © PROFESSOR KEVIN MoTT

	Introduction
	OLS as an Optimization Problem
	When OLS Struggles
	Generalizing the OLS Framework
	In-Sample vs Out-of-Sample
	The Bias-Variance Trade-off
	Regularization Methods
	Model Selection and Cross-Validation
	Finance Applications
	Summary
	References

