
RSM338, Winter 2026

Machine Learning in Finance (RSM338)

Week 1: Math Bootcamp

Table of contents
1 Introduction . 1

2 Notation . 2

3 Logarithms and Exponentials . 2

4 Statistics . 4
4.1 Random Variables and Distributions . 4
4.2 Common Distributions . 4
4.3 Expected Value and Variance . 5
4.4 Covariance, Correlation, and Regression . 5

5 Calculus . 7
5.1 Functions and Derivatives . 7
5.2 Finding Minima . 7
5.3 Functions of Multiple Variables . 8
5.4 Partial Derivatives . 8

6 Linear Algebra . 9
6.1 Vectors and Matrices . 9
6.2 Application: OLS in Matrix Form . 10
6.3 The Gradient . 11

7 Optimization . 12

8 Appendix: Setting Up Python . 12

1 Introduction
In traditional programming, you write explicit rules for the computer to follow: “if the price drops 10%,
sell.” You specify the logic. Machine learning is different. Instead of writing rules, you show the computer
examples and let it discover patterns from the statistical properties of the data. The computer learns what
predicts what.

Finance generates enormous amounts of data: prices, returns, fundamentals, news, filings, transactions.
Machine learning gives us tools to extract information from all of it. Think of ML methods as tools in a
toolbox—just as an experienced contractor knows which tool is right for each job, you’ll learn which ML
method is right for each problem: regression for predicting continuous values like returns, classification
for assigning categories like default/no-default, clustering for finding natural groupings, and text analysis
for extracting information from documents.

Traditional finance models are elegant but limited. CAPM says expected returns depend on one factor
(market beta); Fama-French adds size and value; but there are hundreds of potential predictors. Machine
learning lets us handle many variables at once, capture nonlinear relationships, and let the data tell us what

This version: January 13, 2026 1 © Professor Kevin Mott

RSM338, Winter 2026

matters. The catch: finance is noisy, and patterns that look predictive often aren’t. A major theme of this
course is learning to distinguish real signal from noise.

This chapter builds the mathematical foundation for everything that follows. We cover notation, key
functions, and four main topics: statistics (random variables, distributions, expected value, variance), calculus
(derivatives and how to find minima), linear algebra (vectors, matrices, and why they matter), and optimization
(putting it together to find the best parameters). The goal is to increase your fluency reading mathematical
expressions—we will NOT need to solve math problems by hand or complete any proofs.

2 Notation
Don’t panic when you see Greek letters—they’re just names for quantities. When you see 𝜇, think “the
mean.” When you see 𝜎, think “the standard deviation.” Here are the symbols you’ll encounter most often:

Symbol Name Common meaning
𝜇 mu Mean (expected value)
𝜎 sigma Standard deviation
𝜌 rho Correlation
𝛽 beta Regression coefficient / market sensitivity
𝛼 alpha Intercept / excess return
𝜃 theta Generic parameter
𝜖 epsilon Error term / noise
𝜆 lambda Regularization parameter

Subscripts identify which observation or which variable we’re talking about. Time subscripts like 𝑟𝑡 denote
the return at time 𝑡, while 𝑃𝑡−1 is the price one period earlier. Observation subscripts like 𝑥𝑖 and 𝑦𝑖 refer to
the value for observation 𝑖. Variable subscripts like 𝛽𝑗 refer to the coefficient for feature 𝑗. We can combine
them: 𝑥𝑖𝑗 means feature 𝑗 for observation 𝑖.

The summation symbol Σ (capital sigma) means “add up.” We read ∑𝑛
𝑖=1 𝑥𝑖 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 as “sum of

𝑥𝑖 from 𝑖 = 1 to 𝑛.” The sample mean ̄𝑥 = 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖 and sample variance Var(𝑋) = 1
𝑛−1 ∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2 both
use this notation. The product symbol Π (capital pi) means “multiply together”: ∏𝑛

𝑖=1 𝑥𝑖 = 𝑥1 ×𝑥2 ×⋯×𝑥𝑛.
This matters for finance because compounding returns multiply—if you earn returns 𝑅1, 𝑅2, … , 𝑅𝑇 over 𝑇
periods, your wealth grows by ∏𝑇

𝑡=1(1 + 𝑅𝑡).

3 Logarithms and Exponentials
In finance, we constantly use log returns, so understanding logarithms is essential. The exponential function
𝑒𝑥 (where 𝑒 ≈ 2.718) and the natural logarithm ln(𝑥) are inverses of each other: ln(𝑒𝑥) = 𝑥 and 𝑒ln(𝑥) = 𝑥.

Logarithms have three key properties that make them useful: they turn multiplication into addition (ln(𝑎 ×
𝑏) = ln(𝑎) + ln(𝑏)), division into subtraction (ln(𝑎/𝑏) = ln(𝑎) − ln(𝑏)), and exponents into multiplication
(ln(𝑎𝑏) = 𝑏 ⋅ ln(𝑎)).

Instead of the simple return 𝑅𝑡 = 𝑃𝑡−𝑃𝑡−1
𝑃𝑡−1

, we often use the log return:

𝑟𝑡 = ln(1 + 𝑅𝑡) = ln (𝑃𝑡
𝑃𝑡−1

) = ln(𝑃𝑡) − ln(𝑃𝑡−1)

Why log returns are better:

1. Additivity: Multi-period log returns just add up: 𝑟1→𝑇 = 𝑟1 + 𝑟2 + ⋯ + 𝑟𝑇

This version: January 13, 2026 2 © Professor Kevin Mott

RSM338, Winter 2026

2. Symmetry: A +50% log return followed by -50% log return gets you back to start. With simple
returns, a -50% loss requires a +100% gain to recover!

3. Unboundedness: Simple returns are bounded below at -100% (you can’t lose more than everything).
Log returns range from −∞ to +∞, which is better for statistical modeling.

4. Normality: Log returns are closer to normally distributed than simple returns.

100 50 0 50 100 150 200
Simple Return R (%)

300

250

200

150

100

50

0

50

100

Lo
g

Re
tu

rn
 r

(%
)

Log returns vs. Simple returns

r = ln(1 + R)
r = R (45° line)
Simple return limit: R = 100%

For small returns, log and simple returns are nearly identical (they both follow the 45° line near the origin).
But they diverge for large movements: log returns compress large gains and stretch large losses. As simple
returns approach -100%, log returns go to −∞—the log transform “knows” that losing everything is infinitely
bad.

Python
import numpy as np

Computing log returns from prices
prices = np.array([100, 105, 102, 108, 110])
log_returns = np.log(prices[1:]) - np.log(prices[:-1])

print(f"Prices: {prices}")
print(f"Log returns: {log_returns}")
print(f"Sum of log returns: {log_returns.sum():.4f}")
print(f"ln(final/initial): {np.log(prices[-1]/prices[0]):.4f}") # Same!

Output
Prices: [100 105 102 108 110]
Log returns: [0.04879016 -0.02898754 0.05715841 0.01834914]
Sum of log returns: 0.0953
ln(final/initial): 0.0953

This version: January 13, 2026 3 © Professor Kevin Mott

RSM338, Winter 2026

4 Statistics

4.1 Random Variables and Distributions
A random variable is a quantity whose value is determined by chance—tomorrow’s S&P 500 return, the
outcome of rolling a die, whether a borrower defaults. We use capital letters like 𝑋, 𝑌, 𝑅 for random variables;
when we write 𝑋 = 3, we mean “the random variable 𝑋 takes the value 3.”

We can’t predict the exact value of a random variable, but we often have historical data—past realizations of
the same random process. By looking at many past realizations, we can see patterns: some outcomes happen
frequently, others are rare. This pattern of “how likely is each outcome?” is called a distribution. When we
write 𝑋 ∼ Distribution, we’re saying the random variable 𝑋 follows this pattern.

Python
import matplotlib.pyplot as plt

np.random.seed(42)
sample_sizes = [100, 1000, 10000, 100000, 1000000]

fig, axes = plt.subplots(1, 5, figsize=(15, 3), sharey=True)
for ax, n in zip(axes, sample_sizes):

rolls = np.random.randint(1, 7, size=n)
values, counts = np.unique(rolls, return_counts=True)
ax.bar(values, counts / n)
ax.axhline(1/6, color='red', linestyle='--')
ax.set_title(f'n = {n:,}')
ax.set_xlabel('X')

axes[0].set_ylabel('$p(X)$')
plt.tight_layout()
plt.show()

2 4 6
X

0.00

0.05

0.10

0.15

0.20

0.25

p(
X)

n = 100

2 4 6
X

n = 1,000

2 4 6
X

n = 10,000

2 4 6
X

n = 100,000

2 4 6
X

n = 1,000,000

With only 100 rolls, the pattern is noisy. With a million rolls, it’s nearly perfect—each value appears almost
exactly 1/6 of the time (red dashed line). More data gives us a clearer picture of the true distribution. This
is a uniform distribution: each outcome is equally likely.

4.2 Common Distributions
The normal distribution (or Gaussian) is the “bell curve”—most values cluster near the center, with
extreme values increasingly rare. We write 𝑋 ∼ 𝒩(𝜇, 𝜎2) where 𝜇 is the mean (center) and 𝜎 is the standard
deviation (spread).

Python
from scipy.stats import norm

np.random.seed(42)
x_grid = np.linspace(-4, 4, 100)

This version: January 13, 2026 4 © Professor Kevin Mott

RSM338, Winter 2026

fig, axes = plt.subplots(1, 5, figsize=(15, 3), sharey=True)
for ax, n in zip(axes, sample_sizes):

samples = np.random.normal(loc=0, scale=1, size=n)
ax.hist(samples, bins=30, density=True)
ax.plot(x_grid, norm.pdf(x_grid), color='red', linestyle='--')
ax.set_title(f'n = {n:,}')
ax.set_xlabel('X')

axes[0].set_ylabel('$p(X)$')
plt.tight_layout()
plt.show()

4 2 0 2 4
X

0.0

0.2

0.4

0.6

p(
X)

n = 100

4 2 0 2 4
X

n = 1,000

4 2 0 2 4
X

n = 10,000

4 2 0 2 4
X

n = 100,000

4 2 0 2 4
X

n = 1,000,000

The Bernoulli distribution models yes/no outcomes: something happens (1) or doesn’t (0). We write
𝑋 ∼ Bernoulli(𝑝) where 𝑝 is the probability of success. Finance examples include whether a borrower defaults,
whether a stock beats the market, or whether a transaction is fraudulent.

The normal distribution shows up everywhere because of the central limit theorem: no matter what the
underlying distribution looks like, the distribution of sample means becomes a bell curve as sample size
increases. The CLT tells us 𝑋̄ ∼ 𝒩(𝜇, 𝜎2/𝑛)—the spread of our estimates shrinks like 𝜎/

√
𝑛. To cut your

estimation error in half, you need four times as much data.

Discrete distributions have 𝑋 taking a finite set of values (die rolls, loan defaults), while continuous
distributions have 𝑋 taking any value in a range (stock returns, interest rates).

4.3 Expected Value and Variance
The expected value 𝔼[𝑋] (also written 𝜇) is the probability-weighted average of all possible outcomes:

𝔼[𝑋] =
𝑘

∑
𝑖=1

𝑥𝑖 ⋅ 𝑝(𝑥𝑖)

Each outcome is weighted by how likely it is—outcomes that happen often contribute more. From samples,
we estimate it with the sample mean ̄𝑥 = 1

𝑛 ∑𝑛
𝑖=1 𝑥𝑖. Outliers distort the mean because even rare events (low

𝑝(𝑥𝑖)) can contribute heavily if 𝑥𝑖 is extreme.

Variance Var(𝑋) = 𝜎2 measures how spread out values are around the mean:

Var(𝑋) = 𝔼[(𝑋 − 𝜇)2] =
𝑘

∑
𝑖=1

(𝑥𝑖 − 𝜇)2 ⋅ 𝑝(𝑥𝑖)

The standard deviation 𝜎 = √Var(𝑋) is in the same units as 𝑋. From samples, we estimate variance with
𝑠2 = 1

𝑛−1 ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2. In finance, standard deviation of returns is called volatility.

4.4 Covariance, Correlation, and Regression
Covariance measures whether two variables move together: Cov(𝑋, 𝑌) = 𝔼[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]. Positive
covariance means when 𝑋 is high, 𝑌 tends to be high; negative means they move opposite. Correlation
scales covariance to [−1, 1]:

𝜌𝑋𝑌 = Cov(𝑋, 𝑌)
𝜎𝑋 ⋅ 𝜎𝑌

This version: January 13, 2026 5 © Professor Kevin Mott

RSM338, Winter 2026

A correlation of +1 means perfect positive relationship, 0 means no linear relationship, and −1 means perfect
negative relationship. In portfolio theory, diversification works because assets with low or negative correlation
reduce portfolio variance.

Linear regression goes further than correlation—it finds the best-fitting line 𝑌 = 𝛼 + 𝛽𝑋 + 𝜖, where 𝛼 is
the intercept, 𝛽 is the slope (how much 𝑌 changes when 𝑋 increases by 1), and 𝜖 is the error term. The sign
of 𝛽 matches the sign of correlation.

Python
from sklearn.linear_model import LinearRegression

np.random.seed(42)
market = np.random.normal(0, 0.02, 100)
stock = 1.2 * market + np.random.normal(0, 0.01, 100)

model = LinearRegression()
model.fit(market.reshape(-1, 1), stock)

print(f"Intercept (alpha): {model.intercept_:.4f}")
print(f"Slope (beta): {model.coef_[0]:.4f}")
print(f"Correlation: {np.corrcoef(market, stock)[0,1]:.4f}")

plt.scatter(market, stock)
plt.plot(market, model.predict(market.reshape(-1, 1)), color='red', label=f'beta = {model.coef_[0]:.2f}')
plt.xlabel('Market return (X)')
plt.ylabel('Stock return (Y)')
plt.legend()
plt.show()

Output
Intercept (alpha): 0.0001
Slope (beta): 1.1284
Correlation: 0.9082

0.04 0.02 0.00 0.02 0.04
Market return (X)

0.06

0.04

0.02

0.00

0.02

0.04

0.06

St
oc

k
re

tu
rn

 (Y
)

beta = 1.13

This version: January 13, 2026 6 © Professor Kevin Mott

RSM338, Winter 2026

This is the foundation of machine learning: finding relationships in data. sklearn (scikit-learn) is the library
we’ll use throughout this course.

5 Calculus

5.1 Functions and Derivatives
A function takes an input and produces an output: for 𝑓(𝑥) = 𝑥2, input 𝑥 = 3 gives output 𝑓(3) = 9. In ML,
we work with functions that measure error and want to find the input that makes error as small as possible.

For a straight line, the slope tells you how steep it is: slope = Δ𝑦
Δ𝑥 . Positive slope means the line goes up as

you move right; negative means it goes down; zero means flat. But for curves, the slope is different at every
point.

The derivative 𝑓 ′(𝑥) is the slope of a curve at a specific point—the “instantaneous” rate of change. Imagine
zooming in on a curve until it looks like a straight line; the slope of that line is the derivative. Several
notations mean the same thing: 𝑓 ′(𝑥) = 𝑑𝑓

𝑑𝑥 = 𝑑
𝑑𝑥 𝑓(𝑥). What the derivative tells you: 𝑓 ′(𝑥) > 0 means the

function is increasing at 𝑥; 𝑓 ′(𝑥) < 0 means decreasing; 𝑓 ′(𝑥) = 0 means flat.

0 1 2 3 4
x

2

0

2

4

6

8

f(x
)

Zoomed out

1.0 1.5 2.0 2.5 3.0
x

1

0

1

2

3

4

f(x
)

Zooming in...

1.7 1.8 1.9 2.0 2.1 2.2 2.3
x

0.50

0.75

1.00

1.25

1.50

1.75

f(x
)

Looks like a line!

5.2 Finding Minima
An extremum is a minimum or maximum of a function. At an extremum, the function is flat—it’s neither
increasing nor decreasing, so the derivative is zero. To find the minimum of 𝑓(𝑥): take the derivative 𝑓 ′(𝑥),
set 𝑓 ′(𝑥) = 0, and solve for 𝑥. You won’t compute derivatives by hand in this course—computers handle
that—but you need to understand the logic: the minimum is where the slope is zero.

This version: January 13, 2026 7 © Professor Kevin Mott

RSM338, Winter 2026

2 1 0 1 2 3 4
x

0

2

4

6

8

f(x
)

At the minimum, the slope is zero
f(x) = (x 1)2

Minimum: f ′(x) = 0

5.3 Functions of Multiple Variables
So far we’ve looked at functions of one variable: 𝑓(𝑥). But what if a function depends on two (or more)
variables? Consider:

𝑓(𝑥1, 𝑥2) = −(𝑥2
1 + 𝑥2

2)

This function takes two inputs and produces one output. We can visualize it as a surface in 3D:

2
1

0
1

2x1 2
1

0
1

2

x 2

8
6

4

2

0

f

f(x1, x2) = (x2
1 + x2

2)

2 1 0 1 2
x1

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

f(x
1,

0)

Cross-section: x2 = 0

2 1 0 1 2
x2

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

f(0
,x

2)

Cross-section: x1 = 0

The maximum is at the origin (0, 0)—the top of the “dome.” In both cross-sections, the tangent line is flat
(slope = 0) at the extremum.

5.4 Partial Derivatives
How do we find the extremum of a function with multiple variables? We ask: if I move in just the 𝑥1 direction
(holding 𝑥2 fixed), what’s the slope? That’s the partial derivative with respect to 𝑥1. We write it as 𝜕𝑓

𝜕𝑥1
.

Look back at our cross-sections: each one shows the slope in one direction. At the top of the dome, both
cross-sections are flat—the slope is zero in every direction.

This version: January 13, 2026 8 © Professor Kevin Mott

RSM338, Winter 2026

At an extremum, all partial derivatives are zero. The surface is flat no matter which direction you
look. This is what optimization algorithms search for.

Why this matters for ML: We define a loss function that measures error. Training a model means
finding parameters that minimize that loss—finding where all the partial derivatives are zero.

6 Linear Algebra

6.1 Vectors and Matrices
Linear relationships are easy to work with: easy to compute, easy to optimize, easy to interpret. Vectors
and matrices let us extend these relationships to multiple dimensions.

A vector x is an ordered list of numbers. We write vectors as columns:

x =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

∈ ℝ𝑛

The notation x ∈ ℝ𝑛 means “x has 𝑛 real numbers.”

A matrix X is a 2D array of numbers arranged in rows and columns:

X =
⎡
⎢
⎢
⎣

𝑥11 𝑥12 ⋯ 𝑥1𝑝
𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

⎤
⎥
⎥
⎦

∈ ℝ𝑛×𝑝

This matrix has 𝑛 rows (observations) and 𝑝 columns (features). Element 𝑥𝑖𝑗 is in row 𝑖, column 𝑗.

Python
x = np.array([1, 2, 3, 4, 5])
print(f"Vector x = {x}, has {len(x)} elements")

X = np.array([[1, 2, 3], [4, 5, 6]])
print(f"\nMatrix X has shape {X.shape}:\n{X}")

Output
Vector x = [1 2 3 4 5], has 5 elements

Matrix X has shape (2, 3):
[[1 2 3]
[4 5 6]]

The transpose X′ (or X𝑇) flips rows and columns. An (𝑛 × 𝑝) matrix becomes (𝑝 × 𝑛):

X = [1 2 3
4 5 6] ⇒ X′ = ⎡⎢

⎣

1 4
2 5
3 6

⎤⎥
⎦

In Python, use .T for transpose.

To multiply matrices A and B, the inner dimensions must match: (𝑚 × 𝑛) ⋅ (𝑛 × 𝑝) = (𝑚 × 𝑝). The result
has the same number of rows as A and columns as B. Each element of the output is a dot product: element
(𝑖, 𝑗) of C = AB is 𝐶𝑖𝑗 = ∑𝑘 𝐴𝑖𝑘𝐵𝑘𝑗—row 𝑖 of A dotted with column 𝑗 of B.

This version: January 13, 2026 9 © Professor Kevin Mott

RSM338, Winter 2026

INFO Advanced: How Matrix Multiplication Works

To compute C = AB, element 𝐶𝑖𝑗 is the dot product of row 𝑖 of A with column 𝑗 of B:

[𝑎 𝑏
𝑐 𝑑] [𝑒 𝑓

𝑔 ℎ
] = [𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ

𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ
]

The highlighted element (1, 2) comes from row 1 of A (highlighted) dotted with column 2 of B
(highlighted): 𝑎 ⋅ 𝑓 + 𝑏 ⋅ ℎ.
In Python, use @ for matrix multiplication and .T for transpose:

Python
C = A @ B # matrix multiplication
A_transpose = A.T # transpose

Python
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
C = A @ B # @ is matrix multiplication
print(f"A @ B =\n{C}")
print(f"\nC[0,1] = 1*6 + 2*8 = {C[0,1]}")
print(f"\nA.T =\n{A.T}")

Output
A @ B =
[[19 22]
[43 50]]

C[0,1] = 1*6 + 2*8 = 22

A.T =
[[1 3]
[2 4]]

Exclamation-Triangle Warning

Matrix multiplication is NOT commutative: AB ≠ BA in general. The order matters!

The identity matrix I has 1s on the diagonal and 0s elsewhere:

I =
⎡
⎢⎢
⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤
⎥⎥
⎦

It satisfies AI = IA = A. The inverse A−1 satisfies A−1A = I, letting us “undo” multiplication.

6.2 Application: OLS in Matrix Form
In linear regression, we want to predict 𝑦 from multiple variables 𝑥1, 𝑥2, … , 𝑥𝑝:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖

This version: January 13, 2026 10 © Professor Kevin Mott

RSM338, Winter 2026

But we have 𝑛 observations, so we need 𝑛 equations:

𝑦1 = 𝛽0 + 𝛽1𝑥11 + 𝛽2𝑥12 + ⋯ + 𝛽𝑝𝑥1𝑝 + 𝜖1

𝑦2 = 𝛽0 + 𝛽1𝑥21 + 𝛽2𝑥22 + ⋯ + 𝛽𝑝𝑥2𝑝 + 𝜖2

⋮
𝑦𝑛 = 𝛽0 + 𝛽1𝑥𝑛1 + 𝛽2𝑥𝑛2 + ⋯ + 𝛽𝑝𝑥𝑛𝑝 + 𝜖𝑛

Stack everything into vectors and matrices:

y⏟
𝑛×1

= X⏟
𝑛×𝑝

𝛽⏟
𝑝×1

+ 𝜖⏟
𝑛×1

The ordinary least squares (OLS) solution is: 𝛽̂ = (X′X)−1X′y

INFO Advanced: Where does the OLS formula come from?

Start with y = X𝛽 + 𝜖. In expectation, 𝜖 averages to zero, so we want to solve y = X𝛽 for 𝛽.
We’d like to “divide by X” but X is (𝑛 × 𝑝)—not square, so not invertible!
The trick: premultiply both sides by X′ to make it square:

X′y = X′X𝛽

Now X′X is (𝑝 × 𝑝)—square and invertible. Premultiply both sides by (X′X)−1:

(X′X)−1X′y = (X′X)−1X′X𝛽
(X′X)−1X′y = I𝛽

𝛽 = (X′X)−1X′y

6.3 The Gradient
The gradient is the vector of all partial derivatives:

∇𝑓 =
⎡
⎢
⎢
⎢
⎣

𝜕𝑓
𝜕𝑥1
𝜕𝑓

𝜕𝑥2
⋮

𝜕𝑓
𝜕𝑥𝑝

⎤
⎥
⎥
⎥
⎦

Since the gradient is a vector, it points in a direction. Which direction? The direction of steepest
increase. To find a minimum: follow −∇𝑓 (the direction of steepest decrease).

This version: January 13, 2026 11 © Professor Kevin Mott

RSM338, Winter 2026

2 1 0 1 2
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2

f(x1, x2) = (x2
1 + x2

2): gradient vectors point uphill (toward max)

6.46.4

6.46.4

5.65.6

5.65.6

4.84.8

4.84.8

4.0

3.2

2.4

1.6

0.8

7 Optimization
When we write 𝜃∗ = arg min𝜃 ℒ(𝜃), we mean “𝜃∗ is the value that minimizes ℒ.” Note: min gives you the
minimum value, while arg min gives you the input that achieves it.

Machine learning is optimization. Given data (X, y), we find parameters 𝜃 that minimize a loss function:

𝜃∗ = arg min
𝜃

ℒ(𝜃; X, y)

For linear regression, the loss function is ℒ(𝛽) = ∑𝑛
𝑖=1(𝑦𝑖 − x′

𝑖𝛽)2 and the solution is the OLS formula.

INFO Advanced: Closed-Form Solutions vs. Algorithms

OLS has a nice closed-form solution: we can write down a formula 𝛽̂ = (X′X)−1X′y and compute
the answer directly.
Most ML methods don’t have this luxury. For neural networks, random forests, and many other models,
there’s no formula—we have to search for the optimum iteratively using algorithms like gradient
descent: start somewhere, compute the gradient, take a step downhill, repeat.
That’s why we spend so much time on optimization in this course: understanding how these algorithms
work is essential for understanding modern machine learning.

Everything in this chapter is a building block: statistics tells us what we’re estimating, calculus tells us how
to find minima, linear algebra gives us compact notation, and optimization ties it all together.

8 Appendix: Setting Up Python
Install VS Code from code.visualstudio.com—it’s a free, lightweight editor that works on all platforms.

Install Python from python.org/downloads. On Windows, check “Add Python to PATH” during installation.
On Mac, you can also use Homebrew: brew install python.

This version: January 13, 2026 12 © Professor Kevin Mott

https://code.visualstudio.com
https://www.python.org/downloads

RSM338, Winter 2026

Install the Python extension in VS Code: click Extensions in the left sidebar, search “Python”, and
install the Microsoft extension.

Install packages by opening a terminal and running:

Python
pip install numpy pandas matplotlib scikit-learn

Verify your setup by creating test_setup.py:

Python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
print("All packages imported successfully!")

If you see “All packages imported successfully!” you’re ready to go. If you run into issues, office hours are a
good time to troubleshoot.

This version: January 13, 2026 13 © Professor Kevin Mott

	Introduction
	Notation
	Logarithms and Exponentials
	Statistics
	Random Variables and Distributions
	Common Distributions
	Expected Value and Variance
	Covariance, Correlation, and Regression

	Calculus
	Functions and Derivatives
	Finding Minima
	Functions of Multiple Variables
	Partial Derivatives

	Linear Algebra
	Vectors and Matrices
	Application: OLS in Matrix Form
	The Gradient

	Optimization
	Appendix: Setting Up Python

